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Abstract (continued) 
 
Existing target acquisition models tend to base performance on (a) one-dimensional (1-D) metrics defining the 
amount of information in the target (e.g., resolvable bar cycles, contrast, area, size, perimeter, speed of motion) and 
how that information correlates to level of performance in a target acquisition task (i.e., detection, classification, 
recognition, and identification), (b) search processes that are unrealistic (e.g., that assume random eye movements), 
and (c) 1-D metrics to define the whole scene (clutter) or regions of the scene (e.g., clutter, conspicuity, 
attractiveness).  These tendencies fail to account for known human behavior, although models incorporating them 
may be insensitive to the details of human performance because they predict ensemble rather than individual 
performance.   

Phenomena from perceptual psychology known to affect target acquisition are reviewed in terms of how target 
acquisition models do and do not account for them.  Such factors include motion, color, and visual transients.  Basic 
models of visual search are included as guides for how target acquisition models may incorporate some of these 
factors.   

Visual selective attention is recommended as a means for the theoretically meaningful inclusion of psychologically 
important factors into target acquisition modeling. 
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1. Purpose, Objectives, and Scope 

This technical report is part of a technology program annex (TPA) with the U.S. Army Materiel 
Systems Analysis Activity (AMSAA) that defines its purpose and objective and outlines particular 
topics of interest as follow. 

1.1 Purpose 

This TPA defines the proposed responsibility of the U.S. Army Research Laboratory’s (ARL) 
Human Research Engineering Directorate in support of the AMSAA to perform human response-
based activities that will provide improved search and target acquisition analysis tools, techniques, 
and methodologies. 

1.2 Objectives 

ARL proposes to establish a methodology development program that emphasizes the description 
and definition of the human processes of search and acquisition of military targets in realistic back-
grounds and the relationship between them. 

1.3 Scope 

1.3.1 Topics of Interest 

This review will survey relevant research in target acquisition and highlight the state of the art in 
modeling particular aspects of performance including those of (a) the target:  target type, number, 
signature variation, cues (e.g., glint, muzzle flash), and representation, (b) the target-acquisition 
environment:  effects of background and foreground, local and global environmental variation, type 
of environment (e.g., tropical, jungle, desert), day versus night viewing, and clutter, (c) sensor 
parameters:  field of view (FOV), resolution, and stereoscopic versus non-stereoscopic, and (d) type 
of search:  FOV, field of regard (FOR), time required to search, detect, recognize, and identify 
targets.  Additional topics of particular interest are as follow: 

Particular attention will be paid to the Johnson criteria, and to the ACQUIRE and Night Vision 
and Electronic Sensors Directorate (NVESD1) models since they or portions of them are used by 
AMSAA in current simulation efforts (e.g., Mazz, 1998).  These models also serve as the basis for 
ongoing attempts to integrate additional scene and observer parameters such as motion (e.g., 
Meitzler, Kistner et al., 1998), multiple observers (Rotman, 1989), scene obscurants (Rotman, 
Gordan, & Kowalczyk, 1989), clutter (Tidhar et al., 1994), and multiple targets (Rotman, Gordan, 
& Kowalczyk, 1989) and selective visual attention2.  As such, it is important to know the 
limitations and theoretical extensibility of the models. 

                                                 
1NVESD is part of the U.S. Army Research, Development, and Engineering Command’s Communications and 

Electronics Research, Development, and Engineering Center. 
2The author of this report is involved in ongoing research into the role of selective visual attention in target 

acquisition.  One goal of the research is to determine if ACQUIRE’s performance can be improved by the inclusion 
of attention parameters.  ACQUIRE is not an acronym. 
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1.3.2 Perceptual Psychology and How It Can Inform Target Acquisition Modeling 

The greatest theoretical advances to understanding visual search processes have occurred in the 
reductionistic environments of academic perception laboratories.  The resulting models and 
theories may be of limited direct applicability to military target acquisition scenarios.  However, 
they constrain models and inform the reader about known visual phenomena relevant to target 
acquisition.  Current models from the perceptual literature are discussed in terms of their 
generalizability to the battlefield.   

1.3.3 How Performance is Measured 

Different models use different measures as predictors of performance (e.g., response time, 
observer sensitivity [d′], false detection percentage, probability of detection, etc.).  Models may not 
be directly comparable in that the dependent measures (a) do not necessarily map onto each other 
in a well-defined way, and (b) may not exchange predictably as observer and scene parameters 
change.  To the extent possible, models are discussed in terms of how these various dependent 
measures may be differentially affected by parameter changes. 

1.3.4 Issues Related to the Validation and Testing of Models 

The author of this report made no attempt to instantiate the models in software or hardware in 
order to evaluate them head to head.  There is a brief discussion of issues related to the validation 
of models and the need for a robust data set to perform laboratory studies of models before field 
trials. 

The scope of the review includes non-classified literature from the defense and the academic 
communities that relate to the acquisition of ground targets.  Although target acquisition models 
date back several decades (see Greening, 1974, for a review of early efforts), this review focuses 
on identifying the state of the art in modeling and discusses only classic models that have broken 
new ground and are still of theoretical interest.  Models from the perceptual psychology literature 
are also discussed for their role in promulgating new theoretical ideas that may or may not be 
generalizable to real-world target acquisition. 

 

2. Introduction 

Before target acquisition models can be discussed, it is important to define terms that appear 
throughout this report.  Bliss pointed out in 1974 that no clear standards existed for what is 
specifically meant by the term “target acquisition.”  Since then, models and theories of how 
targets can be acquired from various disciplines (e.g., machine vision, perceptual psychology, 
military simulation, electro-optical design) have proliferated.  However, there remains an 
absence of standards for basic terms. 
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In 1990, the Quadripartite Working Group on Army Operational Research proposed standard 
definitions that are used in this report when we discuss target acquisition models.  Some 
definitions from that working group are 

 • Target Acquisition 

All those processes required to locate a target image whose position may be uncertain and to 
discriminate it to the desired level (detection, classification, recognition, identification).  The 
target acquisition process includes the search process at the end of which the target is located and 
the discrimination process at the end of which the target is acquired.  This definition assumes 
that a time-dependent search process is involved.  However, target acquisition may involve the 
discrimination of a target whose position is known ahead of time.  Such a static process is 
assumed to be the same as the discrimination stage of the above-defined target acquisition 
process. 

 • Search 

The process of visually sampling the search field in an effort to locate or acquire targets. 

 • Discrimination 

A process in which an object is assigned to a subset of a larger set of objects, based on the 
amount of detail perceived by the observer, and the application of knowledge of those details 
sufficient to afford such an action. 

 • Detection 

The perception of an object image (which may be a target image) as being present at a particular 
location and distinct from its surroundings. 

 • Classification 

The determination of whether a detected object is a member of a particular set of possible targets 
or non-targets (e.g., wheeled versus tracked vehicles). 

 • Recognition 

The determination that a target belongs to a particular functional category (e.g., a tank, a truck, 
an armored personnel carrier, etc.). 

 • Identification 

The most detailed level of discrimination of particular relevance for military target acquisition, 
as discussed shortly (e.g., a T-72, T-62, M1, or M60 tank). 

Inherent in these definitions of the processes involved in target acquisition are the ideas that first, 
information must be extracted from the scene and second, that the Soldier in the loop must be 
able to use such information to make an appropriate decision.  (In some cases, the decision made 
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must be that the information in the scene is insufficient even for detection.  In such cases, the 
decision made by the Soldier is the declaration that no target is present.)  In addition to 
information-related constraints, the Soldier must have both the perceptual capability to perceive 
and the cognitive ability to understand the information in order to employ it.  Although this fact 
may seem obvious, modeling the observer’s decision-making process is no simple feat. 

The goal of this technical report is to provide an overview of the literature relevant to the 
modeling of the human in the loop in target acquisition.  Figure 1 highlights the flow of 
information in the target acquisition process from the visual information in the scene through any 
optical or electro-optical sensor systems to the human visual system and finally, to the observer’s 
decision-making processes.  This report highlights the difficulties associated with target 
acquisition, which arise from each of these levels, with particular emphasis on the last three 
elements in which the human observer is given a scene, either optically or electro-optically, from 
which he3 attempts to extract information and acquire a target. 

 
 
 
 
 
 

Figure 1.  The flow of information in human-in-the-loop target acquisition. 

Before we detail the complexity associated with the elements of the human-in-the-loop target 
acquisition process and how they influence modeling the target acquisition process, it is useful to 
briefly say why the human is in the target acquisition loop to begin with.  Although research into 
automatic target recognition (ATR) and aided target recognition proceeds at a rapid pace, current 
ATR systems lack sufficient accuracy and flexibility to allow them to take over the process of 
target acquisition from humans (e.g., Dudgeon, 1998).  The deficiencies of ATR become 
particularly apparent when they are called upon (a) to perform acquisition tasks when the space 
of possible targets is large, and (b) when non-visual factors such as situational context, 
experience, and judgment must be taken into account before an action is taken regarding a 
potential target.  Therefore, the human observer must be available to make the final decision 
regarding action (or inaction) in the target acquisition situation. 

Given that the human remains firmly in the loop for the foreseeable future, as the decision maker 
and as the actual acquirer of potential targets, it is imperative to understand the factors known to 
have an impact on Soldier performance in real-world target acquisition performance.  Table 1 
lists several such factors, broken into their effects on the visual display of the scene in which 
target acquisition is to be performed, and their effects on the decision-making process of the 
observer (from Howe, 1993). 

                                                 
3The male gender pronoun “he” is used throughout this technical report in order to facilitate readability.   

  
target and 

background 
scene 

sensor system visual display human visual 
system 

decision-making 
process 
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Table 1.  Factors known to affect performance of human in the loop. 

Locus of Effect of Factors Factors 
Visual display of scene Target type, size, shape, contrast with immediate background, motion, 

shadow, masking by background elements, camouflage, scene clutter, 
transient cues.  Environmental visibility, cloud cover, sun angle, diurnal and 
seasonal variation, atmospheric scattering, illumination level, field of view. 

Decision making of observer Training, motivation, experience, expectations for possible targets, stress, 
concurrent task load, visual acuity, search pattern, fatigue, field of regard, 
attentional set. 

 
In addition to factors in table 1, there are factors that depend on the sensor system being used.  
For instance, although table 1 may suffice to encompass factors relevant to an observer viewing a 
scene with the unaided eye, additional factors such as display resolution, phosphor decay rates, 
sensor temporal and spatial resolution, atmospheric turbulence and scattering, and target 
emittance and temperature must be added in order to account for performance variability when 
one is viewing FLIR (forward-looking infrared radar) imagery.  Various models may take such 
factors into account (or fail to do so at their peril) when we are attempting to predict Soldier 
performance with various electro-optical devices. 

Because no single model can possibly include all factors known to influence target acquisition 
performance, models will account for some of the factors and ignore others for theoretical 
reasons.  (Such an approach, this reviewer would argue, is the only likely way these factors will 
ever be understood with the depth necessary to model them.) 

The observer factors listed in table 1 may become especially acute, given the increasing demands 
placed on the individual Soldier by technology.  Soldiers are called upon to use ever-more 
sophisticated sensor systems and will therefore be forced to deal effectively with an ever-
increasing amount of information about the scene.  In addition to the increasing cognitive and 
sensory demands placed on the Soldier by technology, potential enemies also use improvements 
in camouflage, concealment, and deception (CCD) technology to better hide themselves.  
Therefore, it seems obvious that any understanding of the human in the loop must account for 
observer variables and how they interact with factors influencing the display of visual 
information to the observer. 

2.1 The Goals of Target Acquisition Modeling 

There are several reasons why it is desirable to predict target acquisition performance.  These 
reasons include 

1.  Better Soldier training  

Training is costly and time consuming.  Learning why Soldiers perform as they do and 
understanding the influences that experience, knowledge, and expectations have on acquisition 
performance may allow for better and more efficient training of Soldiers.  For example, if a 
particular kind of terrain is known to cause problems in tank identification, then training may 
focus on providing more experience with the particular target-terrain interaction.   
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2.  Reduced fratricide  

Current weapon systems are accurate and lethal at ranges that often far exceed the identification 
range of the Soldier controlling the weapon.  Misidentification may therefore lead to missing an 
enemy or firing on a comrade.  Understanding when and why such misidentifications occur may 
inform the development of better sensor systems or training in order to reduce those errors.   

3.  Improved sensor systems 

Sensor systems that provide the image to the Soldier in the loop cannot be evaluated properly 
unless we know what aspects of the sensor display (i.e., the rendered scene) have an impact on 
Soldier performance.  Also, a functional model of the human in the loop will allow for sensors to 
be evaluated before production, thus reducing costs while increasing Soldier effectiveness. 

4.  More effective CCD techniques 

The flip side of knowing the circumstances in which particular targets will be difficult to acquire 
will allow the Army to take advantage of those situations in order to make detection of our own 
forces more difficult. 

2.2 Approach of the Author and Format of Review 

Models of theoretical or historical importance are included to paint a relatively complete picture 
of the current state of target acquisition modeling with respect to the domain specified in the 
TPA.  Major models are classified along a set of five dimensions (described next) and discussed.  
Theoretical details of the models are discussed in terms of the aspects of the scenes and observer 
variables accounted for, dependent measures predicted, and possible theoretical and empirical 
shortcomings.  As mentioned previously, the author did not attempt to instantiate any of the 
models for a direct comparison.  Rather, the literature reviewed in this report is described and 
critiqued in terms of agreement with empirical findings4 and with theoretical understanding of 
human visual processing. 

 

3. Model Description Scheme 

A five-dimensional descriptive framework is outlined. The inherent strengths and weaknesses of 
models at various points of the dimensions are discussed.  All models reviewed in detail are 
given scores along the dimensions.   

                                                 
4Since no experiments were done by the author, the empirical tests of most models come from the respective 

authors themselves or from third parties who instantiated and tested the models directly. 
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In order to make sense of the wide array of literature about target acquisition performance 
models, it is useful to rate each model, based on dimensions describing aspects of its function 
and the domain over which it may be used.  Five dimensions were selected5, based on Greening 
(1974):  

1.  optical/objective ……… cognitive/subjective 

This dimension refers to the locus of the observer’s information processing.  That is, does the 
observer make his decision on the basis of the visual information in the scene or on his 
subjective interpretation of what he perceives the visual percept to be?  Modeling the former is 
straightforward in that all the information used to make the decision is readily available to the 
modeler.  Modeling the latter is more problematic because inferences must be made about the 
cognitive processing that the observer performs to reach a decision. 

2.  reductive ……… comprehensive 

This dimension expresses the possible extremes of approach in terms of how much of the target 
acquisition process is to be accounted for by the model.  (This dimension correlates highly with 
the generalizability of the model.)  Reductive models are easy to support or disprove since they 
make testable predictions.  However, such models lack sufficient detail to extend their predic-
tions to real-world situations.  Comprehensive models take many factors into account but may 
suffer from a combinatorial explosion of possible interactions and may be difficult to verify; tests 
of such models may lack sufficient statistical power to tease apart the effects of one or another 
factor. 

3.  target-centered ……… situation-centered 

This dimension expresses the range of information given in the scene that the subject can use to 
aid in acquiring the target.  For example, a purely target-centered scene may contain a tank 
parked on a uniform texture field (i.e., no information in the scene guides searches for the target 
except the target itself).  At the other extreme is a scene containing mountainous terrain and a 
number of roads upon which a target must travel.  In this case, the roads guide the search for the 
target to such an extent that the target may become immediately apparent.  Purely target-centered 
models exist primarily in studies of perceptual psychology and psychophysics or as a means of 
testing specific predictions about factors affecting performance.  Situation-centered models, on 
the other hand, are more realistic but must make more assumptions about the cognitive processes 
underlying acquisition performance. 

4.  physiological ……… empirical 

This dimension refers to the degree to which the model is based on human visual physiology or 
on curve fits to previously collected empirical data.  Between the two extremes lie models that 
base their performance predictions on known human psychophysics.  Such psychophysical 
                                                 

5Note that no attempt was made to demonstrate the orthogonality of these dimensions.  
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models may rely either on psychometric functions (i.e., be more empirical) or on the physiology 
that underlies the psychometric functions (i.e., be more physiological).  Models that are more 
physiological have the potential of being applicable to a greater variety of situations, although 
the models typically have more parameters to “tweak” to make them work, and the values of 
those parameters may not have strong theoretical underpinnings. 

5.  individual ……… ensemble 

This dimension refers to whether the model attempts to (or is able to) predict performance for an 
individual observer or an ensemble of observers.  Although this dimension may at first glance 
appear to be a simple dichotomy, the breakdown is not so clear.  For example, it would be a 
simple matter for an individual performance-based model to predict ensemble performance by 
processing groups of individuals, but it may or may not be possible for an ensemble-based model 
to step down to performance prediction at the level of the individual.  The implications of this 
asymmetry come into play in terms of the inclusion of observer variables in that ensemble 
models typically assume the presence of “trained military observers” (e.g., O’Kane, 1995) and 
allow little theoretical room for the addition of individual factors.  

 

4. Basic Types of Models 

Although literally hundreds of models have emerged over the years, the bulk of the models 
reviewed in this report fall into a few basic classes.  These classes are discussed. 

This review of the literature divides the space of existing models into four broad types, as 
determined by the underlying processes that the model assumes drive performance.  The classes 
are 

1. Models based on physiology and empirical human psychophysics, 

2. Models based on non-physiological feature extraction, 

3. Models based on theoretical constructs and scene descriptions/metrics, and 

4. Models based on largely atheoretical fits to empirical data. 

We mention where each type of model lies along the five dimensions listed.  Examples of such 
models are given, and the strengths and limitations of such models are discussed.  It will be clear 
that there are models that do not fit neatly into one type but contain characteristics of several 
types.  In such cases, the classification is based on the information purported to be used by the 
observer to make a decision. 
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1.  Models based on physiology and empirical human psychophysics: 

 
 
 
 
 
 
 
These models base their performance predictions on how the human visual system is known to 
respond to simple stimuli.  That is, the models take what is known about vision from 
physiological studies of the visual system (e.g., Hubel & Wiesel, 1962, 1968; Campbell & 
Robson, 1968) and psychophysical studies of how physical stimuli determine overt perception 
and performance (e.g., Nachmias, 1981) and apply this knowledge to the acquisition of targets in 
the real world.   

This category is the broadest in this report, largely because of the theoretical distance between 
physiology on one hand and psychophysics on the other.  The reason why they have been 
grouped together is that both attempt to extend knowledge of how the visual system responds to 
simple stimuli (as determined by studies of visual physiology of psychophysics) and to militarily 
relevant stimuli.  Also, physiological models are constrained in that they must conform to known 
psychophysics, so although two models within this category may process the visual information 
within a scene very differently (one by analyzing it with physiologically based filters and 
transforms; the other by appealing to psychometric functions), their result may be identical. 

There are numerous examples of this type of model (e.g., British Aerospace ORACLE6 model, 
Georgia Tech Vision [GTV], Wilson’s Spatial Vision model, and the cortex transform-based 
distortion metric).  These models tend to be some of the most complex of all target acquisition 
models because their bases in physiology and psychophysics allow them to incorporate many 
factors known to influence human perception so long as the effects of the factors are adequately 
understood. 

There are also models in this class that base perception on the interpretation of the output of 
physiological mechanisms.  Models of this kind treat the pieces of interpreted information as 
“features” or components of objects and background elements in the scene.  Typically, these 
models are geared toward a basic understanding of the visual system and do not constitute full-
scale models of target acquisition.  Examples of these models include MIRAGE7 (Watt & 
Morgan, 1985), MIDAAS8 (Kingdom & Moulden, 1992), and various vision models by 

                                                 
6ORACLE is not an acronym. 
7The acronym MIRAGE is nothing short of a description in and of itself: “Multiple Independent filters of various 

sizes and with both signs, half-wave Rectified before Averaging.  The resultant signals are Gated between adjacent 
zeroes for the Extraction of the primitive code.” 

8MIDAAS stands for Multiple Independent Descriptions Averaged Across Scale 
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Grossberg and colleagues (e.g., Grossberg, 1997; Grossberg, Mingolla, & Ross, 1994).  These 
feature-based models are quite distinct from the second category of models. 

2.  Models based on non-physiological feature extraction: 

 
 
 
 
 
 
 
These models base their predictions on the extraction of specific features from a scene rather 
than on an observer’s ability to extract simple visual information.  As was the case for 
physiology-based feature-extraction models in the previous category, the extracted features are 
assumed more likely to be properties of the visual signatures of military targets than of non-
target elements in the scene.  However, unlike the previous class, the selection of the features 
themselves in these models is not based on how the human visual system is known to function.  
Instead of appealing to simple physical stimuli such as oriented line segments (the output of 
early cortical visual processing [see Hubel, 1988, for an excellent review of this early work]) as 
the features of interest, these models assume that visual processing depends on more complex 
representations not having a direct correspondence to early visual processing.   

Examples of such models include the edge-based 2½-dimensional representation (Marr, 1982; 
Marr & Hildreth, 1980), recognition by components (RBC) theory (Biederman, 1987), object 
symmetry (Rosenfeld, Wolfson, & Yeshurun, 1995), Guided Search models (Wolfe, 1994b; 
Wolfe & Gancarz, 1996), search by recursive rejection (SERR) (Humphreys & Muller, 1993), 
texture-based search (Nothdurft, 1991), and Feature Integration Theory (Treisman & Gelade, 
1980; Treisman & Sato, 1990). 

It is interesting to note that this class of models contains the greatest preponderance of thinking 
from perceptual psychology.  The reason is that perceptual psychology has traditionally 
attempted to speak of the visual world in terms of objects (e.g., Duncan, 1984), groups (Vecera 
& Farah, 1994), surfaces (Nakayama & He, 1994), and features based loosely on visual 
physiology such as T- and L-junctions (Biederman, 1987), color (Theeuwes, 1995), etc.  Much 
progress has been made in understanding human visual search by the use of this reductionistic 
technique, and some of the most theoretically sophisticated information-processing models of 
vision are based on such a breakdown of the scene. 

The strength of the non-physiological feature approach is that the models have good agreement 
with human performance in the laboratory setting.  The models can also more readily use the 
information required for discrimination judgments because they ostensibly concern the features 
that the visual system employs to form such judgments and because the models arise from the 
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perceptual psychology community where models of judgment and decision making are well 
developed. 

The primary limitation of these models is obvious.  Because they were developed in the 
laboratory where stimuli are reduced to their presumably most basic forms, there is little 
evidence that most models can be applied at all to visual processing of real-world stimuli.  The 
primary reason for the lack of generalizability is that the real world cannot simply be reduced to 
a set of basic stimuli.  (If it can, nobody has yet figured out what they are!)  Some attempts to try 
to bridge the gap between the lab and the field have been made with limited success (e.g., Wolfe, 
1994a).   

3.  Models based on theoretical constructs and scene descriptions: 

 
 
 
 
 
 
 
These models also base their predictions of performance on the presence within the scene of 
information of a particular type.  In these models, however, the information does not take the 
form of specific features or combinations of features but rather, a less theoretical form.  
Generally speaking, the more such information is present at the target location, the greater the 
probability or possible level of acquisition.  The constructs used by the models are typically one-
dimensional metrics such as conspicuity (e.g., Toet, 1996), number of resolvable cycles, N, of a 
bar pattern (i.e., a square wave) on a target (Johnson, 1958), or complexity (e.g., Tidhar et al., 
1994).  Such metrics may apply to the location of the target only or they may apply to the entire 
scene.  For example, unidimensional clutter metrics can be global (relating to the entire scene) or 
local (relating only to a small region). 

The logic underpinning these theories is that more information about a target should allow a 
greater proportion of observers to be able to acquire it.  Most of the models and metrics based on 
these constructs are used for predicting ensemble performance.  Examples of models in this 
category include the Johnson-criteria-based models from NVESD, FLIR92 (Scott & 
D’Angostino, 1992) and ACQUIRE (Tomkinson, 1990), the Bailey/Rand search model (Bailey, 
1970), metrics of clutter and its inverse, conspicuity (e.g., Toet, 1996), and models of target 
distinctiveness (Ahumada & Beard, 1996). 

The strength of these models comes from their simplicity and robustness.  The metrics often used 
(e.g., resolvable detail, clutter) have stood the test of time and are widely used as predictors of 
performance.  Clutter, for example, is known to influence performance very strongly and in 
many ways (Akerman, 1993a & b).  In addition, new models of this sort are still being created 
and have predictive validity (e.g., Overington’s 1982 disk discrimination metric; Bijl & 
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Valeton’s 1998a triangle orientation discrimination metric).  These new metrics are discussed in 
greater detail shortly. 

The primary weakness is based on the facts that the hypothesized constructs are derived solely 
from the scene and that the models are designed around ensemble performance rather than 
individual performance.  As such, there may be limited opportunity to add observer variables 
also known to influence performance. 

4.  Models based on largely atheoretical fits to empirical data: 

 
 
 
 
 
 
 
There is a relatively uncommon class of models that predicts performance almost entirely by 
fitting empirical performance data from previous studies to a set of parameters measured or 
controlled in those studies.  Models in this category tend to be older (e.g., Bishop & Stollmack, 
1968, and Poe’s model [see Bailey, 1970, for a discussion of Poe in relation to other models]). 

Empirical models have few strengths.  Their fundamental shortcoming is the lack of theory 
underlying the selection of parameters and the functions that the parameters are to fit.  As such, 
although a curve fit through a set of data points for one study may be quite good, the curve will 
not be generalizable to experiments with different parameters.  Even worse, the model might not 
be able to fit data with the same parameters because the way that the parameters mapped onto 
performance in one study may not take into account any third variables that actually drive 
performance or modulate the effects of parameters.  Thus, even though the situation would seem 
to be identical to the first study, in reality, it may be quite different. 

 

5. Classic Modeling Concepts 

Most models make some common underlying assumptions or are based on a few fundamental 
phenomena.  This section of the review discusses those assumptions as they have been 
incorporated into many models.  Of particular interest in this section are the Johnson criteria, the 
ACQUIRE model, and its incorporation into a recent NVESD search model (FLIR92). 

Across many current models, there are a few common underlying concepts.  The instantiation of 
the concepts in the models, however, differs from model to model.  Here, the concepts and basic 
instantiations of the concepts are discussed.  The following five concepts have been identified as 
being basic to many models. 
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5.1 The Role of Contrast and Contrast Threshold 

Central to all these ideas is that information used by the observer must be observable.  That is, 
the information related to the target must have sufficient contrast, either between the target and 
the background or within the target, to allow the visual system to use it.  The contrast threshold, 
CT, is defined as the intensity of a stimulus required for it to be barely detectable with some 
reliability (usually 50% or 75%).  It is typically described in terms of a lawful relation between 
the area of the target (or some other size-related quantity) and its intensity that holds at or near 
threshold called Ricco’s Law. 

Contrast and the Johnson criteria (see next section and appendix A) are intimately related.  
Johnson (1958) found that detection is typically afforded when a single cycle or less (a cycle 
being defined as a light and dark bar of a repeating bar pattern) on a target is visible.  That the 
requirement for detection is near unity (see table 2) is consistent with the idea that the driving 
factor behind detection may be modeled by signal-to-noise ratio (SNR) or contrast.  For near-
threshold targets (e.g., targets with a small ΔT relative to their background support viewed 
through a FLIR sensor), the SNR is calculated in terms of a threshold SNR, below which a target 
is not visible (Howe, 1993; Johnson, 1958).  For super-threshold targets (when SNR >> 1), the 
target contrast with respect to its immediate background is the crucial quantity. 

Table 2.  Resolvable cycles across critical dimension to perform 50% accurate acquisition (N50) at  
particular levels of target acquisition 

Detection Orientation 
(classification) 

Recognition Identification 

1.0±0.25 1.4±0.35 4.0±0.8 6.4±1.5 

 

Johnson also found that greater levels of target acquisition could be afforded when a greater 
number of cycles within a target are detectable.  Once again, the concept of contrast comes into 
play in that these internal details must have sufficient contrast with their background to be 
detectable.   

5.2 Johnson (1958) or Johnson-like Target Information Requirements for Levels of 
Target Acquisition Performance 

Johnson (1958) found that ensemble target acquisition performance can be predicted by a 
determination of the number of resolvable bar cycles that can be perceived on a target (a quantity 
called N).  (See appendix A for a detailed description of the method Johnson used.)  Johnson 
found, not surprisingly, that the ability to perform increasing levels of target acquisition (i.e., 
detection  classification  recognition  identification) required that a greater number of bars 
be resolvable.  The resulting “Johnson criteria,” the amount of internal detail required to acquire 
a target, are widely cited and used in models of ensemble performance (e.g., ACQUIRE and 
FLIR92).  Table 2 shows the findings from Johnson’s original study. 
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The shape of the function describing the relationship between N and the probability of detection 
is, as one would expect, not a step function at or near 1.0 cycle.  Rather, N50 describes the 
corresponding number of cycles for 50% ensemble performance on an ogive-shaped function 
called the target transform probability function (TTPF).  The TTPF maps predicted probability of 
detection (Pd) for the ratio of N/N50.  For detection, the TTPF can be described as follows: 
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E

d NN
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)50/(1
)50/(
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=

 
in which N = number of cycles resolvable on the target, 

  N50 = number of cycles required for 50% of observers to detect the target, and 

  )50/(7.07.2 NNE += . 

Note that the TTPF described performance at the ensemble level and is not intended to predict 
within-subject performance across trials9. 

Johnson’s original idea has undergone few substantial changes since its first publication, 
although current so-called two-dimensional (2-D) extensions of the criteria take into account the 
height and width of the target rather than simply a “critical” dimension (e.g., the ACQUIRE 
model is based on such an approach).   

That “information” resolvable about a target should drive performance as a unidimensional 
quantity is a powerful idea.  Recent models have gone about determining the target-like 
information in the scene differently, but there remains a central requirement that a given amount 
of target information is needed for the average observer to acquire the target.  (See the following 
section for a detailed description of these efforts.) 

5.3 The “Classical Approach” to Modeling Search and Bailey’s (1970) Separability of 
Time-Dependent and Time-Independent Search Processes 

The so-called “classical approach” to search modeling was first put forth by Bailey (1970), in 
which probability of acquisition in search is a product of independently considered time-
dependent and time-independent stages. 

Bailey asserted that PR, the probability of acquiring (recognizing or identifying) a target, is the 
product of P1, the probability that a single glimpse will locate the target region of a scene, P2, the 
probability that if the target is viewed foveally, it will be detected, and P3, the probability that if 
the target is detected, it will be recognized or identified10: 

                                                 
9Such an analysis has been done, however, in order to evaluate the kinds of errors that such an ensemble 

predictor makes.  For example, Valeton and Bijl (1995) looked at individual deviations from ensemble predictions in 
the evaluation of the Target Acquisition (TARGAC) model (which bases its predictions on a Johnson-type model), 
and Silk (1997) used such deviations to evaluate whether P∞ is a biased estimator of ensemble performance. 

10Indeed, this description of target acquisition is the same as was provided in the definition in section 2. 
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PR = P1 x P2 x P3 

The first term, P1, is time dependent in that it is assumed that during the search of a scene, a 
glimpse has a dwell time at a certain location and a certain amount of time between fixations for 
eye movements.  Search progresses by the random selection of locations about the scene.  The 
cumulative probability, P1(t), that a saccade will land sufficiently close to a target within time t, 
is described as the first arrival time of a Poisson process: 

FOVtetP τ/
1 1)( −−=  

in which τFOV = the mean acquisition time, given that a target is fixated. 

The second two terms are independent of time in that they are both conditional on the target 
having been fixated.  Bailey (1970) derived separate terms for P2 and P3, which are of historical 
significance only (although Ryll [1962] incorporated the effect of scene clutter into the P3 term).  
The most popular search models in use today incorporate a limiting term, P∞, to denote that even 
after an infinite amount of time, some members of an ensemble of observers will be unable to 
acquire the target.   

The current, widely accepted NVESD models ACQUIRE (Tomkinson, 1990) and FLIR92 (Scott 
& D’Angostino, 1992) instantiate this asymptotic term as the product of P2 and P3 and use the 
familiar TTFP as the limiting term: 
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in which N = number of cycles resolvable on the target, 

  N50 = N50 for detection, and  

  )50/(7.07.2 NNE += . 

Thus, the entire ACQUIRE probability prediction equation can be expressed simply as a function 
of time and the number of resolvable cycles on target, which itself is a function of target area and 
contrast: 

( )FOVtePtP τ/1)( −
∞ −=  

The average target detection rate, 1/τFOV, is related to target information available and required 
for 50% ensemble acquisition (Howe, 1993): 

508.6
11

N
N

FOV

=
τ

 

The theoretical and practical shortcomings of this model are discussed in various sections of this 
report. 
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5.4 Clutter and Its Impact on Performance 

Counter to the assumption underlying the Johnson criteria, merely having a certain amount of 
target-related information available in the scene does not completely determine performance.  
The background in which the target is present must also be taken into account when one is 
making predictions of performance.  The term “clutter” has no single agreed-upon definition.  It 
has been described as scene complexity, number or density of target-like elements, number or 
density of objects, and overall scene “busyness” and has been quantified as any of several 
unitless metrics (e.g., signal-to-clutter ratio [SCR]).  What can generally be agreed upon is that 
when certain kinds of terrain (such as desert) enable better target acquisition performance than 
others (such as partially wooded) when viewed optically, it is presumed that the driving force for 
this difference is that the former terrain is less cluttered (or has less clutter) than the latter.  What 
exactly the clutter in the scenes is is not clear, although we can often determine it subjectively 
“just by looking” at the scene. 

Clutter can be defined either locally or globally, depending on the metric enlisted to describe the 
scene.  As stated before, certain kinds of terrain have more or less clutter, in general, than others.  
Likewise, some regions within a given scene may be more cluttered than other regions.  This 
observation is obvious since terrain is rarely uniform and since some parts of a scene (such as an 
open field) can quickly be searched while rocks or trees surrounding the field provide for a more 
difficult search situation.  Typically, local clutter metrics appear in models of time-dependent 
search, while global clutter metrics appear in models of pure acquisition (when eye movements 
are not needed because target location is known ahead of time)11. 

Clutter is known to adversely affect target acquisition performance at several levels.  The impact 
of clutter on the Johnson criteria is to increase the number of resolvable cycles needed to acquire 
the target (e.g., Mazz, 1998).  The effect on search is to decrease the size of saccadic eye 
movements between glimpses (meaning that the eccentricity from the fovea allowing for 
effective search decreases), and to increase the amount of time spent at each glimpse location 
(e.g., Akerman, 1992, 1993a).  In addition and lending support to the definition of clutter as the 
number or density of target-like objects, local clutter affects where eye movements will occur.  
Fixations tend to be executed to “target-like” regions of the scene and not to locations at random.  
The presence of many target-like objects in the field is also known to increase the false detection 
probability compared to when there is relatively little clutter (Schmieder & Weathersby, 1983). 

Clutter is discussed in more detail in a separate section of this report. 

                                                 
11This is not a “hard-and-fast” rule, of course. 
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5.5 Target Acquisition Models Based on the Decomposition of the Scene Into Oriented 
Spatial Frequency Channels 

Models based on a spatial frequency analysis of a scene assume that visual perception is 
mediated by an array of spatially tuned pathways.  Each pathway responds selectively to a band 
of spatial frequencies at a particular orientation and located at a particular position on the retina 
(i.e., corresponding to a particular position in the field of view).  Information from these 
channels forms the building blocks of all visual percepts, including, of course, those of the target. 

Justification for modeling the visual system with a set of oriented spatial frequency channels 
comes from a variety of sources.  First, Hubel and Wiesel’s Nobel prize-winning research (e.g., 
1962, 1968) into the nature of cortical visual processing indicates that the receptive fields of 
neurons in early visual cortex (V1 and V2) seem to be sensitive to the presence of oriented line 
segments but largely insensitive to the presence of dots of light12.  Second, the shape of the 
human contrast sensitivity function (the contrast threshold as a function of spatial frequency) and 
the selective adaptation of parts of the function can be explained elegantly by the summation of 
overlapping contrast sensitivities of a set of narrowly selective functions that varies over spatial 
frequency (Campbell & Robson, 1968). 

In order to model a visual system based on selective sensitivity to spatial frequency, it is 
necessary to determine how many different frequency- and orientation-selective filters are 
required to define a wide variety of stimuli.  The term “channel” is used to describe a mechanism 
that is maximally responsive to patterns of light of a certain spatial frequency and orientation. 

Although there are theoretically 180 degrees of orientation and about three logarithm units of 
spatial frequency to which humans can respond within any orientation, a relatively small number 
of channels suffices to completely describe our percepts.  Richards and Polit (1974) used a 
metameric texture-matching task to determine that one-dimensional textures can be described 
completely with only four channels.  Metamers are two stimuli that differ physically but are 
perceived to be identical to each other.  The existence of a metamer in a sensory modality 
implies that either the receptors in that modality cannot transduce the aspect of the stimuli that 
distinguish them or the nervous system cannot encode the stimuli as being different from each 
other.  Richards and Polit found that any two textures that evoked the same responses along these 
four channels were perceived to be identical, regardless of their actual spatial frequency content.  
In two dimensions (expressed in polar coordinates), Wright and Jernigan (in Akerman, 1993a) 
used a similar method to determine that 42 channels (6 radial and 7 theta oriented) completely 
defined all the textures in their study.  More pertinent to the modeling of the perception of 
objects by spatial frequencies, Vol, Pavlovskaja, and Bondarko (1990) found that objects with 
similar spatial frequency profiles tended to be more confusable than objects with disparate 

                                                 
12That the neurons in V1 and V2 are highly sensitive to sharp edges is not inconsistent with a spatial frequency 

interpretation of vision because such sharp edges approximate delta or step functions, which decompose into all 
wavelengths by Fourier transform.  Thus such an edge should, in theory, affect all properly oriented spatial 
frequency channels. 
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spatial frequency profiles.  This result indicates that, at some level, the visual system seems to 
compute the multi-dimensional distance between combinations of spatial frequencies to evaluate 
their similarity.  In terms of target recognition, then, if the images of two targets do not differ 
greatly in their spatial frequency signatures (e.g., an M60 and a T-72 tank viewed at a distance), 
then they should be difficult to distinguish. 

That a relatively small number of channels may completely determine a percept means that a 
model may be able to use these few channels as a set of feature detectors to extract perceptually 
important information from the scene.  Operations can then be performed on the output of the 
channels in order to determine what the original image must have been to have precipitated the 
activations13.   

Two classes of models have used the Fourier decomposition of scenes in constituent spatial 
frequency information.  One class of models performs the decomposition with the hope of 
finding information within the spatial frequency representation of the scene, which would come 
from the Fourier decomposition of a target.  The assumption of these models is that a given 
target will have a spatial frequency profile that will stand out from that of the scene, and thus by 
monitoring particular channels, a model can detect the target.  Additionally, because fine spatial 
detail resides at high spatial frequencies, the presence of such information may indicate that a 
higher level of target acquisition may be possible.  These models assume that the human visual 
system itself may be monitoring spatial frequency channels when it searches for a target. 

The second class of spatial frequency models is a subset of more general purpose human 
perception models that uses a Fourier decomposition of the scene as a “front end” for 
information feeding into the visual system.  However, this second class of models then uses the 
information (in the form of channel strengths) as features, which are then combined into higher 
order percepts such as junctions, surfaces, and solids.  This class of models tends to be more 
theoretically driven and typically comes from the realm of the perceptual psychology.  Examples 
include Wolfe’s Guided Search 3 (Wolfe & Gancarz, 1996) and Grossberg, Mingolla, and Ross’s 
(1994) model of surfaces, edges, and attention. 
 

6. Classic Modeling Concepts Revisited 

Recent work in modeling has either augmented or attempted to replace the classic concepts.  
Efforts to incorporate new factors into old models, and challenges to the underpinnings of the old 
models are presented.  The limitations of the classic concepts are discussed. 
                                                 

13An interesting perspective of what the visual system actually does comes from the fact that the brain’s task is to 
try to determine the probability of an object being in the visual scene, given the stimulation along the visual 
pathway.  This observation is often overlooked by scientists attempting to determine the visual system’s response to 
a stimulus.  The two things are the opposite conditional probabilities of each other (P(stimulus|response) versus 
P(response|stimulus)) and are in fact quite different (Reike et al., 1997). 
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6.1 Contrast Revisited 

Contrast, like the various metrics proposed as alternatives to bar cycles on target from the 
Johnson (1958) criteria, is a one-dimensional quantity.  It is typically assumed to vary according 
to the observer’s contrast sensitivity function relating the required contrast between an object and 
its background (if both are uniform and untextured) in order to detect a target.  Determining the 
contrast threshold, CT, for real-world situations requires taking into account factors such as the 
reliability of detections (e.g., whether CT is a 50% or 75% threshold), the retinal eccentricity of 
the target, the size of the target, its shape if it differs greatly from a 1:1 height-to-width ratio, its 
hue, and the observer’s level of dark adaptation, to name a few.   

The concept of contrast, as a single quantity indicating to a large degree the ease with which a 
target can be detected, has a number of problems.  First, it fails to take into account various 
psychophysical findings that may be relevant to target acquisition performance in the field.  For 
example, it is known that a non-uniform target against a uniform background is more detectable 
than a uniform target against a uniform background (Akerman, 1992).  

Second, contrast is a local phenomenon and as such, cannot address issues related to the global 
scene such as clutter or highly salient events in other portions of the visual field.  It is known, for 
example, that transient events in the periphery, even when known to be irrelevant, can render 
some objects difficult to detect (O’Regan, Rensink, & Clark, 1999).  In these cases, the contrast 
of the target may far exceed what would be required for detection in the absence of the transient, 
yet it remains undetectable14.  More details of this effect from perceptual psychology and its 
possible relevance to military target acquisition are discussed next. 

Third, the flip side of irrelevant transients reducing the effective contrast of a target is the finding 
that a transient occurring at the target location or motion of the target can render the target more 
visible than it would otherwise be (Mazz, Kistner, & Pibil, 1998; Nakayama & Mackeben, 
1989).  Search models that incorporate motion tend not to adjust contrast threshold downward, 
however; they tend to change P1 to make it more likely that a target is localized in a single 
glimpse15.  This technique, of course, is empirically rather than theoretically motivated. 

Fourth, contrast sensitivity is itself dependent on temporal aspects of the scene or display as well 
as light adaptation of the observer and retinal eccentricity, making its use as a single constant 
quantity related to a target somewhat questionable.  Few Johnson criteria-based models 
incorporate this level of detail into their discussions of contrast.  Models based on visual 

                                                 
14Studies in perceptual psychology that relate to transients and the transient capture of attention use the 

unidimensional term “salience” rather than contrast.  In the luminance domain, it may be argued that the terms may 
be used interchangeably. 

15In such models, motion may increase the size or characteristics of the hard or soft shell search lobe so that 
targets of greater eccentricity from fixation are detectable.  Though such a change is consistent with an increase in 
target contrast, it is not specified as such in the models. 
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physiology and psychophysics, however, are more likely to include these details into the model 
front ends (see imminent section on psychophysical and physiological models). 

Fifth, the contrast threshold below which a target cannot be acquired is not simply a function of 
the physical stimulus and adaptive state of the observer.  Blackwell (1958 in Akerman, 1993a) 
lists several factors and how threshold contrast should be adjusted (always increased) to account 
for them.  His results are summarized in table 3. 

Table 3.  The effect of various factors on target detection contrast threshold (CT) 

Factor Multiplier to CT 
Uncertain frequency of occurrence (lack of vigilance) 1.19 
Uncertain location 1.31 
Uncertain occurrence 1.40 
Uncertain size and occurrence 1.50 
Uncertain occurrence and duration 1.60 
Trained versus naive observers 1.90 - 2.00 
Non-foveal target location 2.78 

 

Note that all these factors, with the possible exception of the last one, are related to 
psychological variables.  That such factors can so drastically change threshold contrast, yet are 
not included in models or are accounted for by appealing to a group of “trained military 
observers,” indicates a lack of psychological sophistication and a clear case for the need to 
investigate how psychological factors influence performance. 

6.2 Rethinking the Johnson Criteria 

Although widely used and a good indicator of ensemble performance, the Johnson criteria are 
not without their problems.  It is instructive to recall the kind of stimuli Johnson used in his 
initial study (see appendix A for details of his methods):  bar patterns of uniform contrast against 
a uniform background.  Such stimuli are obviously unrealistic, given that target and background 
characteristics vary greatly in the field.  For example, using the results of Johnson's study to 
predict detectability of targets in a realistic setting requires N50s needed for various levels of 
acquisition to be increased, indicating that the criteria must be at least partly determined by 
particulars of the situation.  Recall also that clutter is known to increase N50 across the board. 

6.2.1 Other Issues Related to the Johnson Criteria 

These issues hinge on a more realistic representation of real-world target acquisition situations. 

6.2.1.1 Non-uniform Information in Targets (i.e., targets with large regions of little detail) 

This problem arises from our attempting to apply the Johnson criteria to a wider variety of 
targets than were considered at the time of their inception.  Regions of certain targets, such as 
ships, have relatively little detail and thus contribute little to our recognizing or identifying the 
target.  Other regions of the same target contain the critical details.  Since the Johnson criteria 
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depend on the area and the cycles across a critical target dimension, it seems obvious that area of 
the target alone is not a good indication of the information therein (Moser, 1972). 

Moser proposed that instead of using area and resolvable cycles to determine the information in a 
target, the resolvable perimeter or the smallest resolvable perimeter element (i.e., a convex or 
concave region) would be a better indicator of performance.  Work by Kennedy (1983) has led to 
the adoption of the square root of the area rather than simply the area when one is calculating N 
as a partial solution to the difficulties associated with using raw area.  Overington (1982) 
suggested a similar approach to how recognition should be modeled.  He proposed that detection 
performance (that is not biased by aspect ratio) can be predicted by an equivalent-size disk 
detection task, and that identification can be predicted by a disk discrimination task where the 
size of the disk in question was a fraction of the diameter of the target.  Overington incorporated 
the psychophysical function relating disk discrimination and acquisition performance into an 
early version of the ORACLE model (see appendix A for details of the current ORACLE model). 

6.2.1.2 Anisotropic Targets (i.e., targets that appear vastly different when viewed from different 
angles) 

It is plainly apparent that most every target of interest is anisoptropic.  Johnson and Lawson 
(1974) noted that many targets are more difficult to recognize from the front than from the side.  
(For example, envision an M-2 Bradley and an M1 tank from the front and the side.  There is 
clearly more distinguishing detail available from a side view of the vehicles.)  The authors found 
that N50 for recognition of ground vehicles increased by as much as 30% when viewed from the 
front.  At intermediate aspects, however, performance remained relatively good as long as the 
details visible from a side view were still visible.  This observation is very similar to how the 
RBC theory (Biederman, 1987) postulates that humans recognize objects.  This theory is 
discussed shortly. 

The effect of aspect has also been demonstrated to interact with the aspect ratio of the potential 
target.  The increase in N50 as a function of aspect is even more pronounced for targets that have 
a large length-to-width ratio, such as a ship.  In this situation, N50 increased by as much as 500% 
from the side to the front view (Johnson & Lawson, 1974; Ratches et al., 1973, in Howe, 1993).  
Thus, the Johnson criteria can no longer be considered a function of the level of target 
acquisition alone but must also incorporate target dimensions and aspect. 

A different way to characterize target information within a Johnson-like framework (i.e., a set of 
criteria determining the amount of information required to acquire a target at different levels) is 
to use metrics other than N.  Several such metrics have been defined and validated that do not 
depend explicitly on aspect.  These metrics are said to have been validated in that they produce 
reliable criteria for each level of acquisition, similar to the Johnson criteria of a certain N for 
each level of acquisition. 
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As already mentioned, Moser has proposed that target information be a function of perimeter 
while Overington (1982) proposed that a detectable or discriminable disk size be used.  
Blumenthal and Campana (1981, 1983) proposed that image quality (operationally determined 
by the function of the inverse of the size of a barely detectable circle or square) be a metric for 
determining information about a target.  Moser (1972) proposed an area-based metric (which he 
subsequently questioned) in which information is a function of the number of pixels on a target 
required for acquisition at various levels.  Similarly, O’Neill (1974, in Howe, 1993) determined 
that Moser’s number-of-pixels-on-target metric can be extended from silhouette images, used in 
Moser’s study, to TV images. 

A recent metric proposed by Bijl and Valeton (1998a) involves the contrast required to 
discriminate the orientation of an equilateral triangle.  The underlying assumption of the triangle 
orientation discrimination (TOD) metric is that if a subject can reliably determine the orientation 
of a triangle of a dimension and contrast similar to a target, then he should also be able to 
discriminate the target.  The critical dimension in the TOD metric is the square root of its area.  
That is, if a triangle and target have the same square root area, the probability of ensemble 
acquisition should vary together as a function of contrast. 

Bijl and Valeton (1998b) validated the TOD metric against the cycles-on-target metric in the 
ACQUIRE model.  ACQUIRE is used to predict the acquisition range for targets of a particular 
size and contrast.  By comparing data about the discriminability of triangle orientations to data 
related to cycles on target and detection range, the authors found that (a) the TOD metric was a 
better predictor of acquisition range than ACQUIRE, and (b) the TOD metric is less susceptible 
to the aspect of targets, including ship targets known to have a large effect on N50. 

6.2.1.3 The Reliance on a Single Quantity (e.g., cycles on target) to Determine Performance 

One problem with the previously mentioned models that base performance predictions on the 
amount of information that can be derived from the target is the selection of a single aspect of the 
target that best captures the information content of the target.  Area, resolvable cycles, perimeter, 
equivalent disk, square, and triangle size all capture some aspect of the target’s information.  
However, it is likely a mistake to assume that all observers use the same source of target 
information.  How then can the Johnson criteria be made to use more information? 

As an example of a single metric that accounts for more than one aspect of a target, Akerman 
and Lucius (1990) defined the “useful area” as a function of both perimeter and area.  Useful 
area is defined as the portion of the radius inward from the edge of an object’s perimeter, which 
is to be used for assessing target acquisition performance.  This metric has been incorporated into 
Akerman’s visual observer model (VOM) (1992, 1993b).  This technique of combining two 
largely independent features is a possible solution to the problem of selecting the one dimension 
most important for expressing the information content in a target.  Physiological models and 
newer fuzzy logic models (discussed later) use this property. 
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6.2.1.4 The Relative Importance of Some Features Compared to Others 

The concept that target information required for recognition or identification is related to the 
number of cycles resolvable on a target, and not what those cycles represent, is clearly a 
generalization.  “More information” implies that some of it will likely be useful for discrimination 
performance, although the nature of that information is not clear.  Johnson and Lawson’s (1974) 
observation that N50 for anisotropic targets reaches a relatively stable minimum at aspects that 
include portions of the side view (e.g., a front left aspect angle) indicates that as soon as features  
of an object are visible (and themselves discriminable, of course) object recognition can proceed 
relatively independently of viewing angle.  Thus, there may be critical details that, once visible, 
determine performance.  This may be particularly true for targets that are easily confusable, such 
as a T-62 and T-72 tank.  In a case such as this, the presence or absence of a single detail may be 
required for us to discriminate between the two.  Should such a detail be small, the Johnson criteria 
for the discrimination would likely be quite large in that the size of a cycle on the target must be as 
small as the critical detail.  The Johnson criteria, therefore, may be predictive but not very 
informative of the information that the observer uses to make a decision. 

A popular model from perceptual psychology is Biederman’s (1987) (see appendix A) RBC 
theory, which states that recognition of objects requires details (i.e., component geometric forms, 
called “geons” in the theory) of the object to be extractable from the image.  If the aspect of the 
target is such that only a subset of the geons can be extracted (because others are not visible), then 
the object cannot be recognized definitively.  In such cases, the observer uses the information 
available and performs the highest level acquisition decision possible—a classification or a 
recognition rather than an identification.   

O’Kane, Biederman, Cooper, and Nystrom (1997) determined that the confusability between 
various military ground and air vehicles in a recognition task can be explained by an RBC-type 
model.  The authors found that when particular features were obscured or not visible because of 
viewing angle, observers made errors in a manner consistent with their checking an internal 
representation based on the presence and configuration of basic geometric components of the 
objects.   

Marr and Hildreth (1980) and Marr (1982) also modeled the process of recognition by asserting 
that objects in a scene are decomposed into a set of geometric primitives.  Their approach was 
more computationally based than (and used a different mental representation of objects than) that 
of Biederman.  However, a common fundamental aspect of the model is that it required the 
image to contain visual information sufficient to decompose it into its constituent primitives for 
recognition to take place. 

Both RBC and Marr’s theories differ from all the Johnson-like metrics and models in that the 
identity of constituent object components and not the quantity of information (however defined) 
determines identification performance. 
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6.3 The Bailey (1970), the Classical, and the Neoclassical Search Frameworks 

All models of search must specify three aspects of the dynamic search process:  search lobe type 
and size, fixation location selection, and whether over-searching is permitted.  Search models all 
assume that a fixation must occur near a target in order for the target to be acquired.  The 
distance required for acquisition need not define a hard “cut-off” between detectability and 
undetectablity, however.  The visual lobe is defined as a set of probability contours that map the 
probability of acquiring the target at various eccentricities from the point of fixation.  The shape 
of the function can be a step, indicating that no acquisition can occur after some eccentricity (and 
usually that there is equal probability of acquisition within that eccentricity) or a continuous, 
decreasing function of eccentricity.  Models assuming the former are said to perform “hard shell” 
search; models assuming the latter are said to perform a “soft shell” search.  There are also rare 
models (e.g., Georgia Tech Vision, discussed later) that require a target to be fixated directly 
before a detection can be made.  In addition to how close to a target a fixation must fall, search 
models must also define how the locations of fixations are generated.  Some models assume 
random selection with replacement, some assume random selection without replacement, and 
some assume guidance to target-like regions of the scene.  Finally, models must also specify 
whether targets can be fixated more than once without being detected or eliminated from 
consideration. 

In the instantiation of the Bailey framework, some assumptions must be made regarding how the 
time-dependent search operation is conducted.  For example, selection of glimpse locations is 
typically considered to be random sampling with or without replacement.  Also inherent in the 
selection of glimpse locations is the selection of the visual lobe.  As discussed next, scenes will 
vary greatly as to the location of eye movements and distance moved in terms of the background 
and anticipated targets.  Glimpse durations are usually assumed to be constant and independent 
of clutter, which is not necessarily the case.  Clutter is known to increase dwell time (Akerman, 
1992), indicating that P1 may actually depend on processes involved in P∞. 

Two recent models that are based loosely on Bailey’s logic but include more factors known to be 
involved with search performance are the Visual Detectability Model (VIDEM) (Akerman & 
Kinzly, 1979) and VOM (Akerman, 1992, 1993b).  The most notable additions to the Bailey 
design are the effects of clutter (see appendix A and the section on clutter and conspicuity for 
more details) and the (optional) effect of display noise (VOM version 1.2, Akerman, 1993b).  
Display noise is represented by a final term, P4, the probability of discriminating a target that has 
been fixated and detected, given the SNR inherent in the display upon which the target may be 
presented to the observer.  Therefore, in the final model, P = P1 x P2 x P3 x P4.  It may be 
instructive to note that the independence assumption makes the combination of P3 and P4 
possible and that no other model has separated this last term.  The VOM is interesting in that 
although it uses a clutter metric (Waldman’s SCR, discussed later) to alter glimpse time, it still 
uses a random selection of fixation locations. 
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The Bailey search step, as defined by P1, the probability to fixate on the target in a single 
glimpse, assumes that the duration of the fixated eye movement is sufficiently long to allow for 
complete spatial sum of the stimulus.  Spatial summation, which is only nearly complete for 
relatively small stimuli, requires between 50 and 200 milliseconds to take place (Howe, 1993).  
The time required to sum stimuli should certainly have an effect on the observer’s decision as to 
the presence of a target, yet models tend to keep glimpse duration constant. 

Self (1969, in Akerman, 1993a) summarized five aspects of eye movements in real-world visual 
search, which make their prediction problematic: 

When a target is not found quickly, the observer tends to re-search areas of the scene he thinks 
are likely to contain the target while ignoring other areas of the scene which he thinks are 
unlikely to contain the target.  Although knowledge of the target and where it is likely to appear 
could be helpful in many situations (and thus the justification for training the Soldier as to 
common concealment/placement methods), such dependence on where a target ought to appear 
could lead a Soldier to miss a target that is in an unexpected location. 

This behavioral finding is in good agreement with a recent result by Chun and Wolfe (1996) that 
shows that subjects use different criteria for rendering a target present/absent judgment:  when a 
target is located, search stops (as one may expect it to).  When a target is not located, subjects 
employ a “conservative quitting criterion” and will over-search the scene until a more restrictive, 
task-dependent criterion for the target not being present is met. 

The finding also indicates that cognitive processes related to knowledge of likely target 
characteristics and capabilities and possibly, familiarity with strategy and terrain types, has a 
strong influence on performance.  Presumably, there should be a strong effect of training on this 
kind of behavior. 

a. Most subjects first perform a cursory scan of the scene for the target before beginning 
any kind of systematic (trained or instructed) scan. 

b. Targets closer to the center of the FOV tend to be detected more rapidly than those of the 
periphery.   

This finding agrees with recent work in attention deployment in difficult (conjunction) search by 
Carrasco, Evert, Chang, and Katz (1995).  The authors showed that, all things being equal, 
subject performance was faster and more accurate for detection of targets close to fixation.  
Given that a subject will likely begin perusal of a scene somewhere near the center, these results 
may be applicable to Self’s observations. 

a. Putting time pressure on the subject can lead to faster searching (i.e., shorter glimpse 
duration) without a loss in accuracy. 
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b. There are large, consistent individual differences between subjects related to 
performance.  Some subjects are consistently faster and more facile at searching than 
others.   

Although this point does not pose a specific problem for models based on Bailey, since these 
models predict ensemble performance, it means that less of the variance within a study will be 
captured by the situational variables of interest (e.g., N50). 

In addition to Self’s observations, other researchers have observed two additional aspects of eye 
movements that models must be able to address (e.g., Nicoll & Hsu’s, 1995, analysis of field 
data from O’Kane, Walters, & D’Angostino, 1993): 

c. Observers routinely visit the target many times before declaring a detection of the target. 

d. Observers continue to visit non-targets and the target after detecting the target. 

There exists substantial evidence that, as indicated by the observations by Self and Nicoll and 
Hsu, eye movements are anything but the random-selection-with-replacement phenomenon 
assumed by the Bailey model.   

Eye movements in laboratory studies are a common means to determine if a model provides a 
good fit to empirical search data.  A largely unaddressed problem for such a validation procedure 
is how to interpret brief glimpses of 100 to 200 milliseconds in duration.  Such glimpses may be 
corrections for erroneous saccades or brief glimpses.  At issue is what is considered a fixation 
(Karsh & Breitenbach, 1983).  The neoclassical approach to search (discussed shortly) attempts 
to address this distinction in a theoretically meaningful way. 

Eye movements are often considered nuisances in laboratory studies of perception because of 
their unpredictability unless intentionally recorded16.  Some methodologies require subjects to 
perform a task without eye movements.  However, more recent models from perceptual 
psychology have attempted to incorporate them, since there is now a fairly solid theoretical 
foundation for eye movement guidance based on the deployment of selective visual attention 
(Posner, Snyder, & Davidson, 1980; Schneider & Deubel, 1995; McPeek, Maljkovic, & 
Nakayama, 1999).  What has become obvious to vision researchers, long after it was widely 
known to target acquisition modelers, is that eye movements do not agree with the randomness 
implicit in many basic models such as Bailey and ACQUIRE.  In fact, some recent evidence 
shows that eye movements are not performed randomly without replacement but pseudo-
randomly with replacement (Horowitz & Wolfe, 1998). 

                                                 
16Many such studies are interested in covert attentional shifts that do not require eye movements.  Eye 

movements in these studies are considered unwanted noise. 
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6.4 Models of Visual Search 

Because of the evidence for a link (perhaps even an obligatory one; see McPeek, et al., 1999) 
between focal attention and eye movements, it would be beneficial to briefly review some recent 
models of attention on visual search from the perceptual psychology literature.  Models of 
interest include Wolfe and colleagues’ Guided Search models (Wolfe, Cave, & Franzel, 1989; 
Wolfe, 1994; Wolfe & Gancarz, 1996), and Humphreys and Muller’s SERR model (1993).  All 
these models incorporate stimulus-driven and goal-directed selection of attention.  That is, 
attention may be drawn to salient regions of the scene, or it may be directed overtly about the 
scene by the observer. 

Common to the models is the notion of a pre-attentive stage of processing and an attentive stage.  
Pre-attentive processing is large capacity, parallel, and operates over much of the visual field. 
These mechanisms operate on the level of the features that constitute objects rather than objects 
themselves.  Focal attentive processing is small capacity, serial or limited capacity parallel, and 
operates on objects in the field a few at a time.  Focal attention, with or without overt eye 
movements to the region of the scene, is assumed to be required for the proper binding of 
features17 into coherent objects (Treisman & Gelade, 1988) and for the conscious perception of 
objects (Rensink, O’Regan, & Clark, 1997). 

The various versions of Guided Search all consist of two stages, a pre-attentive stage and an 
attentive stage (see appendix A).  The pre-attentive stage extracts features from the scene along 
various feature dimensions separately (e.g., color opponency, orientation, luminance, motion).  
The attentive stage uses information about a known target (if one is available) to select from 
regions of the scene that weighed highly on relevant feature dimensions and then selects a single 
object to inspect.  The interplay of top-down and bottom-up information is instantiated in the 
model by a master activation map.  Search progresses in a time-limited serial self-terminating 
manner (i.e., one at a time until the target is found, all items have been searched, or a temporal 
cut-off has been met) from areas of high activation on the master map to areas of lower 
activation.  The first two versions of Guided Search do not incorporate eye movements. 

Wolfe and Gancarz (1996) have recently modeled visual search with eye movements but with 
fewer features than previous versions of the model.  Guided Search 3.0 assumes that attention, 
both stimulus-driven and goal-directed, creates a spatiotopic saccadic activation map corre-
sponding to the master activation map in earlier versions of Guided Search (see appendix A).  
Maxima in the map represent the input to the saccadic control system, which then causes an eye 

                                                 
17It is important to note that the stimuli used in most laboratory studies of visual perception consisted of such 

simple elements as oriented, colored line segments, rotated letters, and various shapes, usually presented on a blank 
background.  Though such a methodology allows for a discussion of the basic features comprising a simple object, it 
may not immediately be generalized to studies of military target acquisition.  Objects and scenes of military 
significance cannot be reduced to basic features, at least not features analogous to those discussed in the perceptual 
psychology literature.  One could argue, though, that the various attempts to define metrics of target attractiveness, 
conspicuity, and distinctiveness are attempts to find such a set of basic features to describe the real world. 
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movement.  Subsequent saccades to already searched locations are initially inhibited by 
inhibition of return (IOR).  As IOR fades over several hundred milliseconds, the activation of the 
location can again increase until another saccade is produced.  The model is quite simplistic to be 
sure (e.g., it is concerned only with luminance and orientation), but its input from the scene and 
the observer’s intentions allows it to predict nearly all the performance characteristics mentioned 
by Self (1969). 

Humphreys and Muller’s (1993) SERR model focuses more on the stimulus-driven aspect of 
search than does Guided Search. The factors that drive the ease of search are based on target-
target, target-non-target, and non-target-non-target similarity along any of several dimensions on 
which pre-attentive vision can operate, such as color, orientation, size, etc. (Duncan & Humphreys, 
1989).  Search is easy if targets are similar to each other, non-targets are similar to each other, and 
targets and non-targets are different from each other.  As the degree of similarity within targets or 
non-targets decreases, or the similarity between targets and non-targets decreases, search becomes 
more difficult.  The model progresses through search by rejecting regions of the scene recursively 
until it locates the target.  Rejection is based on features dissimilar to the target and similar to each 
other; regions containing many such features are rejected en masse. 

What is clear from both of these models and from other models that posit a pre-attentive feature 
extraction stage followed by an attentive selection stage (e.g., Feature Integration Theory by 
Treisman & Gelade, 1988, and Treisman & Sato, 1990), is that locations selected for attentional 
scrutiny are anything but random.  As such, models that posit the random, independent selection 
of glimpse locations may be suspect since (a) that is not how search progresses, and (b) the 
probability that a target will be selected on a glimpse is a decreasing function of glimpse location 
rather than being constant (i.e., it is dependent rather than independent). 

Some target acquisition models do indeed predict that glimpse locations are selected from 
regions of the image that are likely to be a target (i.e., that contain target-like information, 
however construed).  For example, the GTV (Doll, McWhorter, Wasilewski, & Schmieder, 
1998) model bases search on pre-attentively selected locations that have similar features as the 
(known) target.  (GTV is described in more detail later and is detailed in appendix A.)  Also, the 
evaluation of numerous local clutter, distinctness, and conspicuity metrics is based on the 
assumption that glimpses are directed to regions of the image that are relevant to the target.  
(These metrics comprise a major section of this report and are discussed at length shortly.) 

Both models from perceptual psychology and most models of target acquisition assume that 
over-searching does not occur.  Given the observations of Self (1969) and Nicoll and Hsu 
(1995), this assumption is obviously false.  That is, there are cases when a target will fall within 
a prescribed search lobe, will be discarded as a non-target, and will be inspected later and at that 
time be judged a target.  There are also cases when no target is present and the observer searches 
repeatedly over the scene before rendering a no-target judgment (e.g., Chun & Wolfe, 1996).  
Models of search, as mentioned before, typically assume that once a target falls within a search 
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lobe, it is either found or not.  (Models that incorporate random glimpse location with 
replacement do not make this assumption; instead, however, they make another unrealistic 
assumption about how search progresses.) 

6.4.1 The “Neoclassical” Approach to Search 

Recall the assumptions of the classical search framework as described by Bailey and how they 
confront the reality of search behavior:  the classical approach is serial and self-terminating, 
meaning that search progresses randomly one item at a time until the target is fixated at which 
time, it is either detected or not.  If it is detected, search halts.  Self (1969) pointed out that search 
does not progress in this orderly manner:  objects are not selected at random, objects are 
searched more than once, and objects close to the center of the FOV tend to be searched first. 

Though a pre-attentional saccadic guidance stage can alleviate some of these difficulties, such a 
remedy cannot address the fact that in the real world, observers search the same object more than 
once.  The violation of this assumption draws into question the assumption that search can be 
described as a single Poisson process. 

Nicoll and colleagues (e.g., Nicoll, 1994; Nicoll & Hsu, 1995; Cartier, Nicoll, & Hsu, 1998) 
have proposed a different way to model search and detection.  The neoclassical framework is 
based on a different set of assumptions about how an observer actively goes about searching.  
The phenomenal underpinnings of the model are similar to Yarbus’s (1967) description of eye 
movements:  “the human eye can only be in one of two states: in a state of fixation or in a state 
of changing the point of fixation.”  When one is searching for a target, Yarbus’s description can 
be described as having three states:  (1) fixating on the target, (2) fixating on a non-target, and 
(3) changing the point of fixation.  The modelers in the neoclassical framework describe the first 
two states as “examining points of interest (POIs)” and the third state as “wandering.”  Search 
can therefore be described by a Markov process containing these states and the rates of 
transitions between them. 

Unlike the classical framework in which time to first fixation of a target (and thus detection) is 
an exponential function of total search time, the neoclassical framework assumes that detection 
of a target is an exponential function of time spent examining the target itself, not search overall.  
That is, a certain amount of time must be spent examining the target POI for it to be detected. 

In more detail, a scene contains i POIs, with POI(0) being defined as the target and POI(1) 
through POI(i-1) defined as non-targets.  Search can be in a state of examining any of these i 
POIs.  In addition, search can be in an intermediate state in which it is wandering (without 
memory for where it has been) between POIs.  This wandering state is referred to as W.  The rate 
at which target information is accumulated is defined as α(0). 

The rates describing the transitions between these states can be written as follows: 

w = average rate of observer leaving a POI to wander 
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Si = average rate of observer entering the ith POI from wandering 

Ji = average rate of observer entering the ith POI from another POI 

Markov processes are tractable mathematically because the solution for the behavior of the entire 
system is the linear combination of exponential terms for each state.  Although tractable, such a 
solution may become very complex, since the number of potential POIs in a scene can be quite 
large.  However, the solution may be simplified dramatically once the meanings of the transition 
rates is made clear.  The rates of entering a POI, Si and Ji, can be thought of as a function of the 
attractiveness of the POI.  As mentioned before (and mentioned later in this report when clutter 
is discussed), there are a number of ways that the attractiveness of non-target regions can be 
modeled.  The output of some pre-attentive mechanism, as mentioned before, seems to play a 
role in search performance.  Various local metrics for conspicuity and clutter have also been 
proposed.  All these metrics and processes are involved in the designation of local regions of the 
scene that contain information that is “target like.” 

In addition to points of local clutter in a scene, there is also good evidence that global measures 
and metrics of clutter influence performance (decrease Pd and/or increase response time) without 
appealing to the detailed spatial information in the scene.  Such overall metrics of clutter or non-
target scene attractiveness can be thought of as the rate at which any non-target POI is entered 
from wandering.  This global attractiveness assumption allows us to simplify the model 
dramatically by lumping all the states wherein the eye is neither wandering nor examining the 
target as a single state:  examining a non-target POI.  The solution then becomes the linear 
combination of three states.  The model can be further reduced into a two-state model if the 
target is not considered to have a different attractiveness than non-targets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The complete state description  
diagram for the neoclassical  
search of a target, POI(0), among  
i-1 distinct non-targets points of  
interest, POI(1) to POI(i-1). 
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The neoclassical framework has the advantage of making falsifiable predictions about search 
times, in that observer behavior should be the linear combination of exponential random 
variables.  Nicoll and Hsu (1995) used eye tracker data from a NVESD study (O’Kane, Walters, 
& D’Angostino, 1995) to examine the specific predictions of the memory-less three-stage 
Markov search model.  The predictions of the search portion of the model and the analysis of 
results are as follow: 

1. Targets are not always detected upon first visit.  The probability of detection on a visit is 
independent of overall time spent searching. 

The first statement is obviously true.  The second statement is not true; there is a weak 
correlation between time searching and Pd on a particular visit.  The authors attribute this result 
to the non-exponential character of visit duration during detection visits (discussed next). 

2. A memory-less Markov process implies that the searcher will return to the target after 
detection (i.e., the process itself does not include a termination-upon-detection requirement 
as was assumed in Bailey [1970] and other classic framework models). 

Eye movement data clearly support this prediction. 

3. The duration of pre-detection visits to a target, during detection visits (when detection 
actually occurs), and post-detection visits should all be equivalent and should be 
exponentially distributed. 

The pre- and post-detection visit durations are exponential and essentially identical.  However, 
the during detection visit durations tend to be longer (in the case of the test data, nearly twice as 
long) as pre- and post-detection durations, there were few very short-duration visits, and the 
distribution lacked a tail of long-duration visits.  From these data, it seems that during detection 
visits are more normally than exponentially distributed.  The authors posit that this delay may 
have been attributable to a motor response and some sort of inhibition in the eye movement 
system.  As discussed in the next section of this report, it could also be that a different strategy 
was used for verification leading to a detection rather than checking when no detection decision 
was made. 

4. The distribution of the time to the first target visit is described by one or two exponentials 
(depending on whether all POIs are equivalent or target and non-target POIs are 
different). 

The distribution of first visit times is actually close to an exponential but only after a delay.  This 
result is consistent with observations in the scene perception literature, indicating that observers 
do not begin immediately searching the scene when it appears.  When an observer is confronted 
by a new scene, he first spends a few hundred milliseconds glancing around at it to “get his 
bearings” and extract the spatial layout or “gist” of the scene (Intraub, 1981)18. 

                                                 
18Upon reflection, this observation is obvious even within the logic of the neoclassical framework.  Some visual 

and possibly cognitive process has to extract scene information sufficient to delineate points of interest before the 
search process as described by the model can begin. 
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5. The distribution between gaps (times between visits to the target) is described by one or 
two exponentials. 

The data examined indicate that a two-exponent process provides good agreement with the data. 

6. A memory-less Markov process implies that the gaps before and after detection will be 
distributed in the same way. 

After detection, the gaps are not distributed exponentially.  The search process returns to the 
target too soon after detection for it not to have learned (i.e., search is not a memory-less 
process). 

The detection process (i.e., the assumption that detection is based on time exploring the target 
and not search time overall) makes two additional predictions within the framework of the 
Markov process: 

7. The probability of detection is exponential in the time on target. 

This basic premise of the detection process is supported by the data. 

8. The distribution of the number of targets detected (across all trials in the data set) is 
described by two or three exponentials. 

This hypothesis, too, is supported by the data when the search time is shifted to account for the 
delay in first visit (see [4]), though a few finely grained anomalies remain.  For targets with high 
P∞, a one-exponential model and the classical framework both do well; for targets with low P∞, a 
two-exponential model can account suitably while the classic model’s predictions are too low by 
a nearly constant amount. 

There are several strengths in the neoclassical approach to search and detection.  First, it 
provides theoretical rationale for known eye movement phenomenology such as searching the 
target more than once and continuing to search after detection of a target.  Second, the 
assumption that detection depends on time spent examining the target is more likely an accurate 
description than the assumption in the classical framework (that detection depends on time spent 
searching in general).  Third, the notion that the attractiveness of POIs determines the rates at 
which their states are entered provides a way to insert conspicuity, attractiveness, or clutter, at a 
global or local level, into a theoretical framework.  If the neoclassical framework proves to be a 
better predictor of overall behavior than the classical framework, then the assignment of rates by 
attractiveness may permit the objective analysis of such metrics.   

Nicoll (1994) extended the basic model to include field of regard searches, multi-target searches, 
searches when a particular state is assumed to begin the process (in accordance with the observa-
tion by Carrasco et al. [1995] that targets near the center of the FOV tend to be examined first), 
and time-limited searches.  Not only can the framework accommodate such concepts, but it still 
provides testable predictions. 
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A disadvantage is that the neoclassical model does not completely account for the data set 
examined in the Nicoll and Hsu study.  The time constant that must be added to first target visit 
times, the fact that there is evidence for memory of detection (by the post-detection visit gaps), 
and the non-exponential distribution of during detection target visit durations all provide 
evidence that the Markov process model cannot account for search without additional 
mechanisms.   

Perhaps the most glaring shortcoming of the model is its assumption of memory-less search.  
Such an assumption negates the possibility of cognitive search strategies (e.g., systematic search 
of the scene or deciding not to revisit a previously searched region), when it is obvious that 
observers use such strategies to search!  Of course, Markov model predictions are based on 
distributions across trials, so unless subjects used similar, consistent search strategies, the model 
would be unable to determine if its assumptions were incorrect.  That is, if subjects used an 
evenly distributed (in space) variety of search strategies, then the data would still, by chance 
alone, show an exponential distribution of detection numbers, gap times, etc.  Presumably, 
though, the data would not fit as tightly around an exponential curve.  Once again, individual 
differences are relegated to the error term. 

6.4.2 What is Happening During Detection? 

Nicoll and Hsu’s (1995) finding that distributions of target visit durations are longer and less 
exponential when a detection is made than before or after a detection is made indicates that some 
other process is involved in detection.  What is that process?  It may be instructive to be more 
clear what the authors meant by a “visit” to a POI.  Eye movements do not simply go to a 
potential target, sit there, then fly to another point.  (If that were the case, then no “wander” 
points could be empirically determined.)  Rather, eye movements tended to be of two types: 
sequences of short (in distance) saccades around a small region, and one or two long saccades 
between these sequences.  The inflection points between two long saccades were defined as 
“wander” points (they typically lasted only around 100 ms, a period likely too short to extract 
much information [Cartier et al., 1998]).  The sequences of short saccades around a region were 
defined as “examination” points around a single POI.  In other words, detection was based on the 
accumulation of time spent making saccades and extracting information from a region, not 
fixating directly at a target. 

This distinction gives rise to the possibility that the process of detection of a target may actually 
be a discrimination process in which the target must be discriminated from a non-specific “non-
target” class of scene elements19.  Since the assumption of all these models is that the observer is 
aware of what a target looks like (how else could the non-target POIs have been selected?), 
perhaps the time examining the potential target POI is actually spent by a discrimination process. 

                                                 
19This redefinition of detection is, of course, a tautology.  However, it may be meaningful in the context of a 

difficult search. 
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Stark and colleagues (e.g., Noton & Stark, 1991; Hacisalihzad, Stark, & Allen, 1992; Stark, 
1993) proposed the scan path theory positing that observer eye movements examine a potential 
target for known features and then recognize or reject the object based on the concordance of 
observed and expected features.  The examination of a target for discrimination requires a 
sequence of anticipatory saccades toward known points (corners) of a target.  Unfortunately, the 
scan path theory’s limitation to large, clearly defined, familiar objects in a particular orientation 
makes it unsuitable for target acquisition modeling.  A more complete description of a number of 
Stark’s models is presented in Lind (1995). 

What then is going on during detection that slows the search process?  Some sort of feature-
matching process may be in play.  Also, as Nicoll and Hsu (1995) postulated, there could be a 
motoric delay that slows search while a detection decision is physically rendered (though why 
that should change the distribution from an exponential is unclear).  It could also be that as more 
information accumulates about the target, the more processing time is required for the addition of 
information and for evaluations of that information.  (The actual process of detection of a target 
is not specified in this model, only its temporal character.) 

6.5 Clutter and Its Effects on Performance 

It may be worth mentioning at the beginning of this section that the term “clutter” has no analog 
in perceptual psychology.  Perceptual psychology tends to view a scene as a collection of 
features (e.g., Wolfe, 1998), surfaces (Nakayama & He, 1994), or oriented visual primitives 
extracted by early cortical mechanisms (such as line segments, e.g., Grossberg, 1997).  However, 
one of the most consistent findings in the visual search literature is that response time increases 
with display size (number of non-target distractors).  As mentioned earlier, a non-target is only 
considered to be a hindrance in search (i.e., is only considered to be clutter or to be a distractor in 
the literal sense) if it cannot readily be eliminated from consideration because it is similar to the 
target (Egeth, Virzi, & Garbart, 1984; Duncan & Humphreys, 1989).  Just what it is about a non-
target that is important (e.g., the color, size, shape, orientation, proximity, depth, etc.) is unclear. 

It is also known that the homogeneity and distribution of non-targets influence search difficulty.  
Duncan and Humphreys (1989) found that search performance suffered when (a) non-targets 
were similar to targets, and (b) when the non-targets were dissimilar to each other.  Nothdurft 
(1991) found that targets were easy to see if they differed from their neighbors in a single 
feature, but the same targets embedded near similar features were quite difficult to see.  Wolfe et 
al. (1989, 1994, 1998) have modeled the selection of locations for the deployment of focal 
attention and eye movements as a function of similarity as well as distance between non-targets 
and targets, and Humphreys and Muller (1993) have modeled the elimination of non-targets 
based on these feature-based similarities. 

Taken together, perceptual psychology has a relatively simplified conceptualization of what 
might be considered clutter.  As such, the quest to find a single explanation of clutter and a single 



 

35 

numerical metric for its magnitude comes largely from work in the target acquisition and ATR 
modeling communities20. 

In this section, several metrics for clutter, conspicuity, and distinctness are discussed in terms of 
what they measure, why or how they are purported to work, and how well they have fared at 
predicting target acquisition performance.  The terms clutter, conspicuity, and distinctness, plus 
the term “attractiveness,” are all attempts to define what it means for a target to be easy or 
difficult to acquire.  Clutter may be considered the inverse of the other three terms, all of which 
(for the purposes of this report) are used interchangeably. 

Metrics for clutter can be local, semi-local, or global.  Local metrics refer to parts of a scene that 
are confusable with the target; semi-local metrics refer to the amount of clutter in particular 
regions of a scene; global metrics refer to the overall measure of scene clutter without any 
specific information about regions or locations within the scene. 

6.5.1 Early Clutter Models/Metrics 

Clutter and conspicuity have long been included in models of target acquisition.  As mentioned 
earlier, clutter can affect search processes (by slowing search, shrinking a hard shell lobe, and 
influencing eye movements) and detection and discrimination processes (by increasing the 
amount of information required from the target in order to acquire it).  Different metrics and 
models of clutter have therefore been inserted into models at different stages of processing. 

By far, the most common way that clutter is modeled is in its effect on detection.  It is important 
to note that a model predicting only Pd for an ensemble cannot determine in what stage of target 
acquisition (search, detection, recognition) clutter has its effect.  However, if a local clutter 
metric can predict eye movements (e.g., Rotman, Kowalczyk, & George, 1994; Engel, 1977), 
then such a distinction may be made, even when Pd is the only performance measure.  For 
example, if eye movements reveal that high-clutter scenes contain few fixations near the target, 
then the effect of clutter was on the search process; otherwise, it was on the detection process. 

Ryll (1962) modeled the effect of clutter in terms of the probability of recognition within a 
fixation: 
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in which M = the number of “confusable forms” in the fixation and 

  t = the single glimpse time. 

                                                 
20It could be that the very term “clutter” with its negative connotation as a collection of undesirable things may 

be traced to the fact that in target acquisition, clutter is defined to be negative, a non-target. 
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As M increases, recognition performance drops.  However, Ryll’s instantiation of clutter may be 
incompatible (by itself) with metrics that model clutter’s effect by increasing the average 
glimpse time because as search slows, performance improves21.  A question is, of course, what 
factors determine whether an object in the scene is deemed confusable.  In the original studies, 
observers “eye-balled” the scene to make this determination.  In a recent model (VOM, 
Akerman, 1992, 1993b) the Ryll metric is incorporated with the number of confusable forms 
determined empirically by means of Waldman's clutter metric CN. 

Bailey (1970) instantiated the effect of clutter into the search portion of his model.  Clutter 
(defined as a “scene congestion factor” ranging from 1 to 10) influences the probability that a 
target will be located during a glimpse: 
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in which aT = target size, 

  As = search area, 

  G = scene congestion factor {1..10}, and 

  t = search time. 

6.5.2 Conspicuity, Distinctness, and Attractiveness 

Williams (1966) was the first to insert a metric for target conspicuity into a target acquisition 
model.  His metric relates to clutter's effect on detection probability over time: 

dp AtKePd /1 −−=  

in which Kp = target conspicuity, 

  t = search time, and 

  Ad = display area. 

Williams’ Kp concept is a way of modeling the specific effect that clutter has on the number of 
fixations required to locate the target.  Given an infinite amount of time, however, target 
performance will be perfect.  Williams recognized that many factors would contribute to a single 
measure of the conspicuity of a target, but at the time, only psychophysical data and sophisticated 
metrics existed to describe luminance contrast. 

Similarly to Bailey’s (1970) instantiation of clutter, Williams’ conspicuity metric slows search 
but does not determine the probability of eventually detecting the target.  Such an instantiation of 

                                                 
21An example of a model that includes clutter at several points in processing is the VIDEM model (Akerman & 

Kinzly, 1979).  Clutter was in so many places that Akerman removed some of its effects from his later VOM 
(Akerman, 1993b).  See appendix A for details of VIDEM and VOM. 
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clutter requires an account for the known effects of clutter on detection and discrimination 
performance elsewhere in the model. 

Pratt (1991) described several first order metrics of target distinctiveness.  These metrics are 
based on various first order statistics of the gray-level representation of the scene.  The metrics 
are based on the mean and standard deviations of gray levels across the target and the target’s 
local background.  Note that the various metrics, depending on how the background is defined, 
may be considered local, semi-local, or global (see appendix B for expressions and details of the 
metrics). 

• Absolute average intensity difference, 

• Root mean square (rms) intensity and target variance difference, 

• Adjusted rms intensity and target variance difference, 

• Absolute mean intensity plus absolute mean standard deviation (SD), 

• Absolute mean intensity plus target SD, 

• The Doyle metric (Copeland, Trivedi, & McManamey, 1996), 

• The Doylemod metric (Copeland et al., 1996), 

• The nrms metric (Moulden, Kingdom, & Gatley, 1990; Kosnik, 1995). 

First order metrics do not relate pixels to one another but are descriptors of the regions of the 
image in which the target and background exist.  They lack any information about where 
different levels of luminance are with respect to each other.  An additional class of first order 
metrics is the histogram and histogram intersection metrics.  They are discussed later. 

In addition to the previously mentioned first order metrics, there are metrics that take into 
account the spatial structure of the gray-level images rather than simply the distributions across a 
target or background area.  These metrics are referred to as second order metrics.  Metrics that 
take into account structure can begin to address issues related to specific information within a 
target, which, if present in a background, will lead to a decrease in conspicuity (and thus an 
increase in clutter). 

One such metric that has been used in clutter and conspicuity metrics (e.g., Waldman, Wooton, 
Hobson, & Leutkemeyer, 1988; Rotman, Tidhar, & Kowalczyk, 1994; Tidhar et al., 1994; 
Rotman, Kowalczyk, & George, 1994; Copeland & Trivedi, 1996, 1998) is the gray-level co-
occurrency matrix.  This matrix represents, within an area of a pixilated image, the frequency of 
one gray-level occurring in a specified linear spatial relationship with another gray-level.  The 
co-occurrency matrix, PΔ(i,j), is a GxG dimension matrix in which G is the number of gray-scale 
levels in the image.  It is defined by 
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in which (xk, xk+Δ) = a pair of pixels with gray-levels i and j; 

  i and j = gray-level values from 0 to a maximum, G, separated by 

  Δ = a displacement vector, which is a function of the distance, s, between the 
pixels and the angle θ between them. 

  f = {1 if xk=i and xk+Δ=j, or 0 otherwise}; 

  N = number of pixels in the area of the image. 

Waldman et al. (1988) used the co-occurrency matrix to calculate a normalized clutter metric, 
CN, which has been used in Akerman’s VIDEM (Akerman & Kinzly, 1979) and VOM 
(Akerman, 1992, 1993b).  CN represents the degree to which the background texture is similar  
to the target in shape, size, and orientation.  (See appendix B for the calculation of CN.) 

The normalized clutter measure is computationally demanding and makes some assumptions that 
may not be realistic when one is dealing with naturalistic images.  It is symmetrical in orientation 
and size and assumes that as similarity between target and background texture elements decreases, 
clutter decreases uniformly.  That is, texture elements different in size from the target by some 
amount will produce the same clutter (all other things being equal) regardless of whether the target 
or texture element is larger.  The same assumptions are made for orientation; there is no absolute 
difference in orientation.  These results contradict a phenomenon from perceptual psychology 
known as search asymmetry (Wolfe, Cave, & Franzel, 1989; Wolfe, 1994).  Search asymmetry 
occurs when the reversal of target and non-target features results in drastically easier or more 
difficult searches.  (For example, searching for a vertically oriented target among oblique oriented 
non-targets is much more difficult than searching for an oblique oriented target among vertical 
non-targets.) 

Also, the CN metric yields zero clutter if the background is uniform, regardless of the structure of 
the target.  Such a result is obviously overly simplistic and points to a limiting case to which the 
metric may or may not decay gracefully as background uniformity increases.  No literature 
regarding whether such gradual decay actually occurs has been found. 

Similar to the normalized clutter metric is another metric based on the gray-level co-occurrency 
matrix:  the texture-based image clutter (TIC) (Shirvaikar & Trivedi, 1992; see appendix B for 
details).  Like CN, the TIC metric depends on the size of target and background elements.  
However, unlike the linear weight given to transitions between gray levels as a function of the 
magnitude of their difference in CN, TIC squares the difference, thereby giving more emphasis to 
larger disparities in luminance.  According to the authors, TIC is only marginally better than CN 
at extracting the meaningful structural information from the co-occurrence matrix. 
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Co-occurrency matrices are calculated one per displacement vector, Δ.  That is, an image has as 
many co-occurrency matrices as there are positions between the target and background blocks.  
In order to overcome this inherent specificity, Copeland and Trivedi (1996, 1998) created a 
metric of target distinctness based on the average co-occurrency matrix (ACE) (see appendix B 
for details).  This matrix is used in determining the distinctness of two patches of texture of a 
particular size.  It is based on all possible displacement vectors in the texture model.  In 
psychophysical tests involving the detectability of low-contrast geometric targets embedded in 
texture noise, the ACE metric was judged more accurate than either a first order Doyle metric or 
the target complexity metric, described next (Copeland & Trivedi, 1998). 

Schmieder and Weathersby (1983) attempted to quantify the global clutter in an image by using 
a measure of statistical variance, SV (see appendix B for details).  From the global SV, an SCR 
is calculated on the basis of absolute target contrast.  SCR is then used rather than SNR as a 
predictor of detection in a cluttered scene. 

The premise underlying the SV metric is the notion that the visual system is interested in areas  
of the scene with high gray-level variability.  Unlike the second order metrics based on the gray-
level co-occurrence matrix, SV is not concerned with the structure of the target or the back-
ground but only with its variance.  As such, two perceptually different patterns could produce 
identical SVs.  The theoretical justification for using the variance of the gray levels rather than a 
structure-based metric such as the co-occurrence matrix may have arisen as much from the lack 
of computing power in the early 1980s as anything else.   

Schmieder and Weathersby (1983) found an orderly relationship between N50 for detection and 
the SCR, 

SCR
N 150 ≅  

which was integrated into the Night Vision Model by Nichols and Paik (1993).  The resulting 
increase in correlation between predicted and recorded detection performance as a function of 
clutter (from r2=0.04 to r2=0.64) was significant. 

In evaluating SV and SCR in an urban environment, Cathcart, Doll, and Schmieder (1989) found 
that the metric underestimated performance compared to “rural” clutter.  Such a result indicates 
that factors such as expectations and other sources of contextual scene information may be as 
important as image variance in determining performance in some situations.  Birkmire, Karsh, 
Barnette, and Pillalamarri (1992) found that global SV was a poor predictor of overall search 
time.  When SV was calculated for blocks of a display, Rotman, Kowalczyk, and George (1994) 
found that SV did not correlate highly with eye movements (i.e., fixations to regions of high 
clutter) in search. 

Based on two assertions (that most targets tend to be more symmetric than non-targets and the 
visual system is able to efficiently detect regions of high local symmetry), Reisfeld, Wolfson, 
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and Yeshurun (1995) proposed a semi-local or global metric for eight-axis (circular) symmetry, 
CS8 (see appendix B for details).  Although the authors reported that the metric did a reasonable 
job of predicting near-target fixations for aerial views of symmetric ground targets, Rotman et al. 
(1994a) found that the circular symmetry did not perform well at predicting general human 
fixation behavior in a naturalistic scene.  (That the model arose from the discipline of machine 
vision may indicate that it is better suited for locating man-made objects in general than for 
predicting human search performance.) 

Tidhar et al.’s (1994) probability of edge (POE) clutter metric is founded on the idea that high 
spatial frequency edge information is important for the detection of targets.  Related to this idea 
is the finding that the visual system seems to perform edge extraction early in visual processing, 
thereby creating a representation of the scene from which objects and surfaces can be readily 
extracted (Marr & Hilldreth, 1980; Marr, 1982; Nakayama & He, 1994; Biederman, 1987).  
Rather than extracting complete edges and treating them as elementary features, however, the 
POE metric (see appendix B for details) quantifies clutter by counting the number of edge pixels 
in sub-regions of the scene.  Unlike the SV metric, in which sharp edges (i.e., regions with high 
luminance gradients) lead to a higher SV magnitude, POE merely counts the pixels.  Like SV, 
however, POE relates only the amount of something rather than the structure of the image. 

Unfortunately, also like SV, the POE metric fails to accurately predict response time (Birkmire  
et al., 1992) and fixation location during search (Rotman et al., 1994a).  Presumably, a problem 
with the metric is that although edges of objects lead to edge-defined pixels, edge-defined pixels 
do not necessarily indicate the edges of real objects.  Rotman, Hsu, Cohen, Shamay, and 
Kowalczyk (1996) evaluated a co-occurrency matrix-based clutter metric and the POE metric.  
The authors determined that the co-occurrency-based metric outperformed the POE metric in 
predicting observer false alarm responses.  The stimuli used in the Rotman et al. (1996) study 
may have been biased more toward the co-occurrence matrix since they were “large targets, 
possibly camouflaged, where the texture of the target region is of crucial importance” (p. 673).  
As such, there may simply have been less information in an edge representation of the targets 
than in their internal texture-like detail. 

Rotman, Tidhar, and Kowalczyk (1994) introduced the peak signal (ΔT) metric to describe the 
difference between average “temperatures” across clusters of pixels (though any intensity 
measure such as luminance will also work).  (See appendix B for details of how the metric is 
calculated.)  In averaging across the gray-scale image in order to form clusters, we must realize 
that all fine structural detail in the scene will be smoothed.  (One input to the calculation is the 
minimum cluster size, and no group of pixels smaller than that size is permitted in the cluster 
representation.)  An interesting aspect of this metric compared to other second order metrics is 
that it does not require knowledge of the target’s structure; it concerns only the gray-level map of 
the image. 
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The authors found that the metric was a good indicator of human fixation performance in 
naturalistic scenes.  No other evaluations of the metric were found.  Toet (1996) has called the 
model too computationally expensive to be of practical use in his comparison of clutter and 
conspicuity metrics. 

Another metric that purports to extract meaningful information about a target from a description 
of edge-based information is the target complexity (TC) metric of Tidhar et al. (1994).  The 
metric is similar to the POE, but it adds the assumption that target objects will have more 
pronounced edges than interior details.  (Defeating such a real-world property of objects is one of 
the goals of cryptic coloration in animals and camouflage patterns on targets, so the metric has a 
degree of face validity.)  The metric is based on the cumulative distribution of difference of 
offset Gaussians (DOOG)-extracted edge points on the target and its immediate surround.  (See 
appendix B for the rather complex description of this metric.) 

Although Tidhar et al. (1994) determined that the metric did a reasonable job of predicting overall 
detection RT, the fact that the metric is only defined for a target and its immediate surroundings 
(usually taken to be twice the height and width of the target) leads to problems.  For example, a 
target with a uniform local background will result in a measure of TC indicating a very simple 
search, even though the scene may contain much complexity that would cause performance to be 
quite poor.  Grossman, Hadar, Rehavi, and Rotman (1995) used TC as a basis for calculating a 
signal-to-noise metric (analogous to the calculation of Schmieder & Weathersby’s SCR) in order 
to model false alarms in cluttered environments.  The authors found that the metric was as 
effective as either POE or SCR at predicting the trade-off between P(FA) and Pd.  (That is, that 
they all made similar predictions for how subjects change their thresholds as clutter increases to 
produce more false alarms.) 

A second order metric that incorporates both the concept of contrast and its ability to drive 
search performance and the fact that contrast as defined by a first order metric does not take into 
account the contrast variations along the boundary of the target, is the complex contrast metric, 
K (Lillesæter, 1993).  Instead of modeling contrast as a function of maximum or average 
absolute difference between target and background regions, K includes a term for the integrated 
point-by-point contrast around the perimeter of the target.  (The metric is defined in appendix B.)  
The U.S. Army Night Lab Static Performance Model for Thermal Viewing Systems (Skjervold, 
1995) has incorporated this metric.  Although the metric does not take into account target 
structure, that omission may not be important for its inclusion in a detection model.   

The last class of non-empirical conspicuity metrics to be discussed is based on how the human 
visual system analyzes the scene with and without the target.  These metrics will produce 
estimates of how distinct an observer will perceive the target to be within the context of the 
scene; they do not estimate the conspicuity of the target alone.  The basic rationale for these 
models is that although the visual system may seem to pay attention to such things as complex 
contrast, the probability of edges within a region, the distribution of light and dark pixels, etc., 
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visual processing does not occur on a pixel-by-pixel basis.  Visual processing begins with an 
analysis of the scene akin to a Fourier analysis.  As such, metrics should work from that point 
onward. 

Information about portions of a scene can also be characterized in terms of their gray-level 
histograms (i.e., the rank-ordered gray value distribution of pixels in the portion of the image).  
Such histograms can be normalized by the division of the level of a gray-level bin by the fraction 
of pixels that have that value.  Image regions that appear visually similar should have similar 
normalized histograms.  Since the normalized histogram is a first order metric and conveys no 
information about the internal structure of a region of the image, the converse is not necessarily 
true; regions that have identical histograms may have dramatically different appearances.  Also 
not necessarily true, though usually the case in reality, is that two image regions appearing 
visually different (e.g., containing a target and not containing a target) will have different 
normalized histograms.  Conspicuity metrics based on the normalized histograms of images 
determine the degree of histogram overlap by a logical intersection of target and background 
histograms.  A greater degree of overlap indicates less conspicuity (see appendix B). 

The Camaeleon model (Hecker, 1992; see appendix B) calculates normalized histograms not on 
the raw gray-level representations of images but on images convolved with band-pass filters.  
Regions of the scene are designated target and background, and after band-pass filtering, 
normalized histograms are created for the local energy (based on chromatic or achromatic 
contrast), spatial frequency, and orientation of each region.  The degree of camouflage (analogous 
to magnitude of clutter, or the inverse of conspicuity, but bound on [0,1]) is defined as the product 
of the intersections of all target and background histograms.  The main shortcoming of this 
metric, of course, is the fact that it is uninterested in structural details of the target, and thus may 
judge a target to be well camouflaged when it is not! 

Another detectability metric based on neurophysiology is Watson’s (1987) Cortex Transform 
(see appendix B for details).  This metric is based on a multi-channel-oriented spatial frequency 
analysis of an image adjusted by a contrast sensitivity function.  It is called the cortex transform 
because it mimics the oriented edge detection of area 18 (V1) of visual cortex.  Two images, one 
of a scene containing the target and one without, are first converted to luminance contrast images 
and then subjected to the cortex transform.  The result of the transform is a four-dimensional 
representation of the scene, with each of 20 or 24 channels (five or six frequencies at four 
orientations each) weighed at every point (i.e., the four dimensions are x, y, frequency, and 
orientation).  The difference between the strengths of the target and no-target components is the 
component’s contribution to the overall distinctness.  Masking is implemented in the metric 
when the distinctness component is reduced by a factor related to the component’s background 
signal strength.  The distinctness of the scenes is determined by the Minkowski sum of the 
coefficients. 
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The cortex transform, when masking is implemented, has been shown to be a good predictor of 
human detection performance for low-contrast scenes (Ahumada & Beard, 1996; Rohaly, 
Ahumada, & Watson, 1997).  Without the masking term, performance tends to be overpredicted.  
The cortex transform is an elegant implementation of known early visual physiology and 
psychophysics in that it integrates inter-channel masking and known contrast sensitivity 
functions and is based on human and animal physiology.  However, it is a predictor of pure 
detection in static, achromatic scenes, so its current usefulness is limited. 

Also relying on the assumption that differences in individual oriented spatial frequency channels 
constitutes a distinctness metric from which the detectability of a target can be determined is the 
Perceptual Distortion distinctness metric of Martinez-Baena et al. (Martinez-Baena, Fdez-
Valdivia, Garcia, & Fdez-Vidal, 1998; Martinez-Baena, Toet, Fdez-Vidal, Garrido, & 
Rodriguez-Sanchez, 1998).  Like the cortex transform, the metric involves a spatial frequency 
decomposition.  However, the distinctness metric is based on changes registered only in the few 
channels that provide the principal structural components of the image. 

The image is first decomposed into radial spatial frequencies representing distinct structural 
components of the image.  The relative contributions of each band (wavelength and orientation) 
to the overall image structure are computed, and the principal components are identified.  Then a 
set of oriented Gabor filters is applied to the image, based on the principal components.  Finally, 
a difference metric is created on the basis of a combination of the differences of filter output on 
the images containing and not containing a target. 

The metric was evaluated against a set of field images taken during the DISTAF (distributed 
interactive simulation, search and target acquisition fidelity) field test at Ft. Hunter Liggett, 
California, in 1995 (Toet, Bijl, Kooi, & Valeton, 1997; see reference for information about 
acquiring image set) in which nine vehicles were deployed at various locations.  Scenes were 
digitized still photos.  To evaluate the model, the authors digitally removed the target from each 
scene and applied the metric to the images with and without the target.  The resulting distinctness 
metric was then compared to an empirical metric of distinctness by Toet and colleagues (described 
next).  The empirical and calculated distinctness correlated highly (r = 0.81).  The calculated 
metric also correlated highly with response time to detect the target in the scenes (r = 0.82).  These 
results indicate that the distortion-based metric may be a good overall indicator of what subjects 
use to guide their search for a target in a static scene.  Like many of the metrics in this section, the 
distortion-based distinctness metric is achromatic and concerns only static scenes. 

6.5.3 An Empirical Measure of Conspicuity 

Toet (1996) and Toet, Kooi, Bijl, and Valeton (1998) described an empirical method for 
determining the conspicuity of a target in a scene.  They used Engel’s (1977) operational 
definition of conspicuity as being the peripheral area around the center of the visual field from 
which specific target information can be extracted in a single glimpse.  This definition is 
obviously similar to the concept of a visual lobe.  Toet and colleagues define detection 
conspicuity and identification conspicuity as the maximum distance between the target and 
fixation that permits the respective level of acquisition.   
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Toet and colleagues assert that it requires only a small number of subjects to perform a 
psychophysical experiment on a scene and its target in order to determine conspicuities 
consistent across a large group of observers.  The results of Toet et al. (1998) indicate that two 
experienced subjects are able to determine conspicuity measures that accurately predict overall 
search performance (response time to detect a target) for a group of observers viewing the same 
stimuli.  The agreement between conspicuity and response time is a good indication that the 
measure may serve as an efficient and effective means of determining conspicuity.  

Such an empirical method may be of more use in future laboratory-based investigations of 
conspicuity than in the prediction of performance for scenes encountered in real time.  The authors 
have in no way determined lawful or predictive relationships between characteristics of the scene 
and the target and conspicuity as empirically measured.  On the other hand, their relatively simple 
empirical method allows accurate measures of conspicuity to be extracted quickly, thus making a 
factorial investigation of scene features and their role in conspicuity feasible.   

6.5.4 Other Clutter Issues 

Related to the idea that discrimination may require the extraction of specific target features is the 
possibility that clutter is perceptually masking such target features.  Legge and Foley (1980) and 
Tolhurst and Barfield (1978) demonstrated the contrast necessary for the detection of a sine wave 
grating when it was accompanied by a nearby masking grating of a similar frequency and 
orientation.  Given that high spatial frequencies contain information about edges and fine detail, 
background elements of similar frequency and orientation to target features may make them less 
visible.  Masking is difficult to measure since its 2-D characteristics are as yet unknown (see 
Olacsi & Beaton, 1998).  However, implementing masking into a spatial frequency-based model 
of vision or target acquisition has been accomplished successfully in the cortex transform. 

Although clutter can dramatically influence performance, there are some visual events that are 
known to “cut through” the clutter:  visual transients and motion.  These visual events have a 
temporal character that is absent from static visual clutter.  As discussed in another section of 
this report, motion has long been known as a feature to which the human visual system can 
readily attend.  Kosnik (1995), in particular, found that search for a moving target was nearly as 
easy when the target is viewed on naturalistic terrain as a uniform background.  Likewise, 
transient visual events as used in laboratory studies are not only easy to see but may also be 
effectively impossible to ignore (e.g., O’Regan, Rensink, & Clark, 1999).  If a target is known to 
be associated with such a visual event, clutter will not play nearly so vital a role in acquisition. 

6.6 Models and Metrics Based on Human Visual Physiology/Psychophysics 

Models based on human visual physiology and psychophysics focus their attention on how the 
human visual system processes actual scene information, rather than on how overt performance 
may be related to scene variables such as clutter.  These models are of interest because their goal 
is to predict human performance for any situation in which an observer attempts to acquire a 
visual target.  As such, a model should inherently be able to address such factors as sensor type, 
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number of targets, moving or stationary target, presence of obscurants, level of clutter, etc.  
These factors are not of separate interest since a model should be able to compensate for them by 
virtue of the fact that it is an accurate depiction of human visual processing and decision making. 

For this report, the broad class of these models can be described as lying along a continuum from 
psychophysical but non-physiological all the way to highly physiological and predictive of 
psychophysics.  All the models attempt to model early human visual properties.  However, some 
go about it more by processing information in stages related to closed form expressions of 
psychophysical performance or by appealing to psychometric functions to determine human 
perception of stimuli.  Others approach it by processing information based on stages corresponding 
to the transformations that information in the visual system undergoes during vision.  Neither style 
is necessarily better or worse than the other, so long as (a) the physiology agrees with the 
psychophysics, and (b) the physiology and/or psychophysics are well understood enough that a 
broad class of phenomena can be modeled.  This discussion will begin with highly psychophysical 
models and move to more physiological models.  

6.6.1 The British Aerospace ORACLE Model 

The ORACLE model from British Aerospace (Overington, Brown, & Clare, 1977; Cooke, 
Stanley, & Hinton, 1995) attempts to model search, detection, and discrimination performance 
for a human observer.  (See appendix A for details of the model’s operation.)  The model is 
based more on known psychophysics than on the physiology underlying the psychophysics.  An 
important note about ORACLE is that it is modular and proprietary, and no full implementation 
of all the modules is known by the author of this report to exist outside British Aerospace.  The 
documentation available for this report concerns search, detection, discrimination, and clutter in 
an achromatic image only. 

ORACLE bases its predictions on the retinal image of the target and how the visual system 
responds to the retinal image.  The primary assumptions behind the model are (a) the edges of a 
target are more important than the target’s total energy in determining detectability, (b) 
discrimination is a function of the visual system’s ability to distinguish between two adjacent 
features of a target, each of which is approximated to be half the target size, (c) signal strength 
must exceed a noise strength in order for a detection or discrimination to be made. 

Much of the model’s detail is concerned with how the non-linearity of eye optics and the 
modulation transfer function of the cornea determine the point spread function of the eye.  
Images of known resolution, contrast, and sharpness are then subjected to this function and 
retinal images are produced.  The sum of the activity and the gradient of the responses of 
adjacent photoreceptors constitute the basic signal of the target.   

ORACLE models search as a soft-shell process.  Fixation locations are selected at random with 
replacement.  Glimpse time is a constant 1/3 second.  If the target lies within the soft shell lobe, 
then acquisition can occur.  The lobe size is modeled as a distribution of hard shells and may 
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change throughout a trial.  The effect of clutter in the model is to influence the distribution of 
lobe sizes to favor the selection of smaller shells.  That is, clutter makes search less efficient 
because less of the image area can be searched at a time. 

An important aspect of ORACLE is its ability to equate its distinction definition to the Johnson 
(1958) criteria embodied in so many other models.  It does so by Fourier decomposition of a 
Johnson-like bar pattern into a fundamental and several odd sinusoids and determines whether 
ORACLE can distinguish between the component spatial frequencies at a given resolution, 
contrast, and size.   

Although the model available to this reviewer did not incorporate color, Cooke et al. (1995) 
mentioned that such a version of ORACLE does exist.  Its implementation is based on color 
opponency between R and G cones only.  Although it is unclear how such an implementation of 
color processing can be a reasonable facsimile of the human visual system, the model seemed to 
do well at a laboratory color distinctness task.  The visibility (signal strength relative to clutter 
strength) of colored shapes on a colored background was judged by the model to correspond 
highly with human judgment of the conspicuity of the same colored stimuli.  Insufficient detail 
of the study and the implementation of the model were provided to evaluate this claim, however. 

Though the model’s various steps in processing the image from the outside world (e.g., display 
or sensor or optical device) through optics, photoreceptor anatomy and physiology, adaptation 
and luminance effects, and contrast sensitivity functions are all based on well-documented 
psychophysics, the model as a whole has not been evaluated against what Cooke et al. consider a 
set of images sufficient to test it in toto.  Some caution is urged before such an evaluation, 
especially at the limits of the known psychophysics.  Models such as this likely become less 
accurate as the stimuli on which they are based approach the limits of the psychophysical 
measurements used to develop the models.  Overington (1982) pointed out that models based on 
psychophysics have specific “envelopes of usage” where their predictions are accurate.  Outside 
such envelopes, error propagates from step to step in calculation, resulting in a potentially 
dramatic degradation in overall performance. 

A more serious shortcoming of the model is that its firm foundation in psychophysics has made 
the integration of top-down (i.e., observer) factors extremely difficult.  Currently, there are no 
such factors in the model, probably because the psychophysics behind the effects of training, 
attention, stress, etc., often involve setting a decision criterion or a processing speed rather than 
changing the shape of a psychometric function.  Since there is no single objective set of data 
relating observer variables to psychophysics, the authors have taken the conservative route and 
omitted it entirely. 

A related shortcoming is the fact that the model processes information in a single stream from 
image to retina to signal to response.  There is no operation that takes into account goal-directed 
(top-down) or stimulus-driven (pre-attentive or bottom-up) information.  A manifestation of this 
shortcoming is in the assumption that fixation location is random, as opposed to guided by 
interactions of low- and high-level processes (e.g., Wolfe, Cave, & Franzel, 1989; Wolfe, 1994; 
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Wolfe & Gancarz, 1996; Doll et al., 1998).  The authors readily admit that this assumption is 
unrealistic and that eye movements tend toward target-like portions of the scene, but they argue 
that “...the effort in modeling an equivalent level of detail is far greater than the reward for many 
situations” (Cooke et al., 1995, p. 167).   

Motion is incorporated into ORACLE only in terms of looming motion (i.e., motion directly 
toward the observer).  Such motion is modeled as an increase in target contrast and size, from 
which an increased signal will occur.  However, such a gradual increase in signal strength may 
not account for the particular salience characteristic of such stimuli. 

6.6.2 The Georgia Tech Vision (GTV) Model 

The GTV model by Doll, McWhorter, Schmieder, and Wasilewski (1995), Doll, McWhorter, 
Wasilewski, and Schmieder (1998) and its military counterpart, visual/electro-optical (VISEO) 
by Doll et al. (1997) are general purpose models of human vision that can be used to model 
search and detection in dynamic, cluttered scenes.  Because the models are intended to be true to 
the human visual system, they are based more on human visual physiology than on ORACLE.  
The optics of the eye, as well as retinal and cortical areas V1 (edge detection), V4 (color 
processing), and MT (motion processing) are integrated into the model’s processing.  The 
physiology must, of course, produce the same psychophysical functions that underpin ORACLE.  
However, the authors chose to be more general in order to handle situations that do not agree 
closely with existing psychophysical findings.  (The model is detailed in appendix A.)  Much 
detail is provided in the text of this report because GTV comes closest (in this author’s opinion) 
to integrating what is known about the spatial frequency aspect of early vision with what is 
known about the phenomenology of visual search and attention. 

GTV is quite complex and incorporates many aspects of visual processing.  The primary 
processes of interest include a multi-channel-oriented SF model of feature extraction, texture-
based scene segregation into object-like “blobs,” and parallel pre-attentive and attentive modules 
to calculate two probabilities for locations in the image:  the probability that a blob will be the 
target of fixation (Pfix) and the probability that, once fixated, the blob will be detected (Pyes|fix).  A 
neural network learning algorithm determines the features that are to be stressed in determining 
these probabilities.  Signal detection theory is then used to determine whether a blob will be 
determined to be a target.  Search proceeds by the selection of locations that have high Pfix 
without replacement and determining if a decision is to be made based on Pyes|fix.  Outcome 
measures of the model are Pd, P(FA), d′, and RT. 

In more detail, GTV consists of five modules:  (a) a front end, (b) a pre-attentive module, (c) an 
attentive module, (d) a selection and training module, and (e) a performance module.  GTV is 
similar to Wolfe et al.’s Guided Search model in that parallel pre-attentive processes extract 
peripheral feature information that is used for eye movement guidance.  Concurrent with pre-
attentive processing, an attentive process extracts foveal feature information that is used for 
discriminating between clutter and a target.   
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• Front end processing in GTV concerns retinal factors such as pigment bleaching, pupil size, 
flicker, and transient luminance changes.  Color information is converted from responses of 
the three photoreceptors to responses on two (R/G and B/Y) opponent process pairs and an 
average achromatic cone luminance signal.   

• The pre-attentive and attentive processing modules in GTV use sets of filters tuned for 
peripheral and central color, temporal, and spatial sensitivities to extract features (e.g., 
motion, orientation, and spatial frequency) from the image.  Motion information in the 
image (sampled at 30 Hz) is filtered to produce a scalar local motion signal and integrated 
to add blur to the image.  Each module has a pattern perception unit that decomposes the 
temporally integrated spatial information into 24 frequency and orientation selective 
channels.  More spatial information comes from the cone luminance than the color 
opponency, in agreement with psychophysics.  Interactions between the channels are 
simulated to incorporate spatial masking.  Finally, a second order texture metric is 
calculated and blobs (regions of different textures, corresponding presumably to object-like 
regions of the image) are segregated from the background.  Features in SF and orientation 
domain are assigned to the blobs for their region. 

• The selection/learning module takes the feature loadings on the blobs from both the pre-
attention and attention blob map and assigns weights to them, based on the state of a neural 
network that has been trained (or not) to look for a specific target.  This module is intended 
to mimic the ability of a human to improve in performance of a task that is initially quite 
difficult (i.e., to switch from controlled, conscious processing of sensory information to 
automatic processing [Schneider, Dumais, & Shiffrin, 1984]). 

• The performance module determines blob Pfix and Pyes|fix, and simulates a search process to 
determine Pd, P(FA), d′, and RT for a trial.  Pfix for each blob is based on a noisy decision 
process that takes into account the weights on the relevant features of blobs as well as noise 
(quantum and neural for near-threshold stimuli), clutter (defined as “the extent to which 
another blob’s luminance, texture, chromatic information, and temporal contrast match the 
current blob”), and the spacing of other blobs nearby.   

We determine Pyes|fix and RT by first calculating the SCR for each blob in the image.  The SCR is 
taken to be equivalent to an effective d′, which in turn determines Pyes|fix for a blob.  Assuming 
that search progresses without replacement from highest Pfix to lowest and that search occurs at a 
constant rate, then search for a trial can be modeled.  The RT to a decision (either a false alarm 
or a detection) is determined by the number of blobs that will be encountered before a decision is 
made. 

6.6.2.1 Comments 

The model is interesting in that it incorporates many human physiology and perceptual 
psychological principles.  However, there are serious issues related to learning and to motion 
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processing.  Learning is assumed to be the selection of features and combinations of features 
indicating the possible presence of a target among clutter.  The processing, especially in the pre-
attentive module, is meant to mimic the function of learning a task so well that it can be done 
“without thinking” (i.e., automatically [Schneider et al., 1984]).  After sufficient training, GTV 
can perform even quite difficult searches with ease.  The problem with the implementation of 
learning is that any combination of features can be learned pre-attentively—a phenomenon that 
cannot occur in humans.  (For example, performance in a rotated T/L discrimination task will 
never become automatic even after tens of thousands of trials [Wolfe, 1998].)  Some features 
cannot be processed in parallel pre-attentively but require focal attention (Wolfe & Bennett, 
1997; Rensink et al., 1997).  The authors acknowledge that after training, noise needed to be 
added to the input images in order for the model not to outperform humans (Doll et al., 1998). 

Motion is included in the model.  However, the temporal filtering only adds a scalar motion 
feature to blobs in the image.  Because motion information is scalar (only related to speed, not 
direction), the model’s attention mechanism has no direction selectivity as the human visual 
system has.  Therefore, GTV can only distinguish between speeds.  This does not allow the 
system to extract information about motion parallax (e.g., how a moving target’s violation of 
parallax may be plainly visible). 

Other, more minor issues relate to assumptions made about when the model calculates some 
quantities and how it operates to make a decision.  The calculation of all foveal features at the 
same time (by attention module) is not physiologically realistic.  The model would be more 
realistic and behave identically if it were to calculate the foveal features only after a blob is 
selected by the performance module.  (This behavior takes into account the unbound feature 
aspect of pre-attentive vision by Wolfe & Bennett, 1997.)  Also, foveation of a target is required 
for a “yes” decision to be made.  Even though the model is ostensibly based on the conspicuity 
of targets, highly conspicuous targets must still be fixated for the model to produce a “yes” 
response.  This result is inconsistent with “pop-out” (i.e., rapid search largely insensitive to the 
number of distracting elements). 

6.6.3 The Wilson (1991) Spatial Vision Model 

The basic assumption underlying Wilson’s (1991) model is that at the detection and identification 
threshold, information from only a small number of spatial channels that are most sensitive to the 
target determines performance.  This assumption makes intuitive sense since a signal in the visual 
system from the target will naturally be carried by those channels most responsive to the target.  
The interesting aspect of the theory comes from the idea that decisions are based on the output of 
these few most active channels.  The model is based on results from human and non-human 
primate psychophysical and physiological experiments, indicating that spatial tuning of six 
mechanisms comprises the behavior of the primate retino-geniculate-cortex (V1) pathway.   

The six mechanisms correspond to different spatial frequencies.  Lower frequency mechanisms 
corresponding to coarser grain details are selective to fewer orientations; higher spatial frequency 
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mechanisms are sensitive to a greater number of mechanisms.  The locations on the retina that 
correspond to the different mechanisms also differ, with higher frequency mechanisms at smaller 
eccentricities than lower frequency mechanisms.  In addition, the filters have different contrast 
sensitivities, consistent with the contrast sensitivity functions of humans.  (See appendix A for a 
table describing the filters comprising each purported mechanism.) 

Although the Wilson model of spatial vision is general purpose in nature, it does have 
implications for the thresholds required for the detection and identification of targets in real-
world scenes.  The model assumes that the degree to which a target can be acquired depends on 
the response of the six spatial mechanisms to the target image.  More to the point, the model 
assumes that a few highly selective filters are the ones that determine the detectability of the 
target.  If two different targets stimulate these basis channels identically, then they will be 
identified as the same target, and discrimination between them will not be possible.  In fact, 
additional information at other spatial frequencies will not permit discrimination because the 
information is not present in the filter responses that go into the decision. 

In order to test Wilson’s spatial model, Thomas and Barsalou (1995) determined whether a target 
with sufficient contrast to be barely detectable or identifiable will be perceived differently if 
information is added to non-basis filter channels.  The authors used images of B-1B bombers and 
analyzed them with a set of filters corresponding to Wilson’s model.  The three most active 
channels were identified and a new image consisting only of information on these channels was 
created.  Subjects judged the two images as identical, indicating that the decisions seemed to be 
based on these channels alone. 

MIRAGE (Watt & Morgan, 1985) and MIDAAS (Kingdom & Moulden, 1992) are not models  
of target acquisition per se but are models of how physiological processes can extract meaningful 
feature information from a scene.  Both models concern one-dimensional stimuli only.  The image 
is sampled at all locations at four different spatial scales.  The output of the filters at the different 
scales can only be interpreted as an edge or a bar.  The central difference between the two models 
lies in how the information from the different spatial scales is combined.  In MIRAGE, the 
responses of all the filters are combined before they are interpreted; in MIDAAS, the filters are 
first interpreted, and then their interpretations are combined across scales.  The scale dependence 
of MIDAAS is viewed by the authors as an asset since it provides for more than one possible 
interpretation of the scene. 

6.6.4 The Limits of Direct Access Spatial Frequency Models 

Models such as Wilson’s (1991) Spatial Vision Model assume that detection and discrimination 
decisions are based on output from a single set of tuned pathways.  In such models, the only 
difference between detection and discrimination arises from how information from those 
pathways is used.  Models based on this assumption (rather than an assumption that different 
basic operations provide information to detection and discrimination stages) are referred to as 



 

51 

“direct access multi-channel models” (Olzak & Thomas, 1992).  The authors examined four 
assumptions inherent in this class of models in terms of discrimination performance: 

1. The observer has direct access to the output of the channels. 

2. The observer can selectively attend to a subset of these channels. 

3. The pathways are independent of one another.  (Mathematically, they are independent 
Fourier components.) 

4. Information from the pathways is integrated probabilistically in order to determine the 
presence or absence of information in the image based on the channel activations. 

Unfortunately, these assumptions do not withstand scrutiny well.  Olzak and Thomas (1992) 
demonstrated that the channels were not independent by cueing one channel and measuring 
effects in other channels.  Verghese and Pelli (1994) and Lamb and Yund (1996) found that 
observers are quite poor at selecting a scale bandwidth to attend to and search, indicating that at 
least consciously, selection of individual channels is limited.  There is some evidence that lateral 
masking of spatial frequencies can occur and that they are not restricted to within-channel 
frequencies (Ackerman, 1993a).  Finally, Thomas and Olzak (1990) found that integration of 
disparate bandwidths was worse than integration of similar bandwidths. 

Similar to the Wilson (1991) model is the physiological saliency-based models of Itti and Koch 
(2000).  The underlying premise of the model is that an observer directs his or her gaze at the 
most visually salient location in the currently visible retinal image.  Performance in the model is 
based on eye movements to successive points of high salience in a scene, with this saliency 
represented as a spatiotopic map of the scene. 

The Itti and Koch (2000) model determines the saliency of locations of the retinal image through 
a multi-feature, multiple scale scheme based on known visual psychophysiology and psycho-
physics.  The extraction of early visual features takes place at nine spatial scales for each of three 
features:  luminance intensity, color, and orientation at four orientations:  0, 45, 90, and 135 
degrees.  Extraction at each location is performed by simulated center-surround excitation-
inhibition regions akin to the known physiology of early cortical visual processing.  Each set of 
multiple scale feature maps creates one feature conspicuity map by means of competition 
between areas of high activation within each feature.  This competition takes the form of large 
spatial scale inhibition corresponding to the behavior of so-called non-classical receptive fields 
present in visual cortex (Gilbert et al., 1996).  The three conspicuity maps are then combined into 
a single saliency map by means of linear combinations, the relative weights of which are 
determined empirically, based on model performance, and then fixed as constant. 

The model posits a “winner-take-all” process so that the next fixation location is determined by 
the location of highest activation in the saliency map.  After simulated saccade selection takes 
place, the area of highest saliency is temporarily inhibited (for approximately 500 to 900 ms) so 
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that it is not immediately selected as the next fixation location.  This inhibition instantiates the 
previously mentioned IOR effect widely demonstrated in perceptual psychology. 

Although the Itti and Koch (2000) model is explicitly “bottom up” in nature22, the authors assert 
that with proper selection of weights, the model can be applied “hands off” to a variety of visual 
search situations.  These weights include the relative weight given to specific values of features 
(e.g., to a particular orientation or a particular color), the relative strength of features in the 
calculation of the salience map, and the temporal characteristics of the simulated search (e.g., 
dwell time, frequency of saccades, duration of IOR).  During evaluation of the model (described 
next), the authors found a single such set of these characteristics and ran the model on a variety 
of scenes ranging from simple and conjunctive visual search tasks to search for military vehicles 
in the DISTAF image set.23 

Overall, the authors report that the model showed “reasonable results” (Itti & Koch, 2000, 
p. 1497) across a variety of scenes ranging from simple search to artistic paintings to outdoor 
scenes.  Although it is notoriously difficult to empirically evaluate a set of saccades, the time and 
number of saccades required for the model to generate a fixation close enough to a target to 
acquire it may be objectively compared to human search for targets in the same or similar 
situations.  The model was successfully able to produce pop-out effects for simple feature 
searched and slower search (with number of saccades increasing as a linear function of number 
of distracting elements) for conjunctive search.  Thus, for these simplified scenes, an entirely 
bottom-up search strategy may be sufficient to explain human behavior. 

The model fared less well when compared to human performance searching for military targets 
in the DISTAF image set.  After some changes in the temporal dynamics of search to better 
match average human characteristics such as saccade frequency and latency (recall that the Toet 
et al., 1997, human performance data set did not contain information about eye movements but 
only response times to locate the target), the model was able to detect the targets adequately and 
in far fewer saccades than would be required if fixations occurred at random locations.  
However, both the overall response time required to locate the targets and the pattern of scene 
difficulty as determined by human response time rankings were quite different between the 
model and the human data.  Specifically, although scenes that required more time for humans to 
detect the target also required more time for the model to detect the target, the correlation is 
extremely weak (it was not mentioned in Itti & Koch, 2000).  In addition, there was significantly 
more variability in human response time across scenes than there was in model response times, 

                                                 
22The authors write, “Our model is limited to the bottom-up control of attention, i.e., to the control of selective 

attention by the properties of the visual stimulus.  It does not incorporate any top-down volitional component” (Itti 
& Koch, 2000, p. 1492). 

23Note that when this author refers to “search” for a target, it is not intended to imply that the model actually had 
a goal of finding a particular target.  Rather, performance was judged on the basis of overall pattern of simulated 
saccades which, eventually, fell close enough to the target for it to be acquired. 
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and in 35 of the 44 scenes evaluated, the model was able to detect the target in many fewer 
fixations than humans could. 

In order to account for this lack of agreement between human and model performance, Itti and 
Koch (2000) noted the differences between the task set for human participants in the Toet et al. 
(1997) study and those set for the model.  Specifically, the participants were trained in the 
appearance (from three vantage points) of all possible military targets before they viewed the 
DISTAF images.  Itti and Koch (2000) assert that, given the difficulty of many of the searches24, 
the goal-directed knowledge of possible target identity possessed by human participants may 
have biased them toward poorer performance by continually drawing their attention to areas of 
the scene “in inappropriate ways” (Itti & Koch, 2000, p. 1502). 

Parkhurst, Law, and Niebur (2002) modified the Itti and Koch (2000) model to add a more 
realistic decrease in peripheral contrast sensitivity.  More importantly, their study included the 
collection of eye movements for human observers viewing the same scenes to which the model 
was subjected.  Similar to Itti and Koch (2000), the tasks in the current study did not include 
visual search for a target.  Rather, participants were told to “look around at the image” for the 
5 seconds of each trial (Parkhurst et al., 2002, p. 112).  The model was evaluated in terms of how 
well its predictions of locations of high scene salience correlated with observer fixation 
locations.   

Results indicated that stimulus-based saliency predicted a significant proportion of variance in 
fixation location variance, with strongest correlation occurring early during scene presentation.  
That is, when scenes were first presented to observers, the early fixations were better predicted 
by the model than were later fixations.  Nevertheless, the saliency-based model continued to 
produce significant correlations between predicted and observed fixations throughout the trial.  
These findings are consistent with the notion of gist extraction (Intraub, 1981), as described 
earlier during discussion of the Nicoll and Hsu (1995) results.  Specifically, in search tasks, the 
first few hundred milliseconds of viewing a scene may be consumed by the extraction of overall 
spatial layout and schematic information from the scene (not by the active search for a target).  
The saccades required to extract this information, which take place by definition before there is 
any high-level cognitive representation of scene content, are likely guided by local scene 
salience.  Only later do top-town aspects of gaze selection come into play.  Since the Parkhurst  
et al. (2002) tasks did not involve search, this initial stimulus-based guidance of eye movements 
may have been extended.25 

                                                 
24Itti and Koch (2000) omitted the eight most difficult of the 52 DISTAF images because the model or the human 

participants were unable to detect reliably within a 10-second window. 
25Note that Parkhurst et al. (2002) also found that observers showed a bias toward fixations near the center of the 

scene, particularly in early fixations.  This finding may correspond to “orienting” in the scene before saccades that 
support gist extraction. 
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Contrary to the Parkhurst et al. (2002) findings of significant stimulus-based influences 
throughout all fixations in a trial, Turano, Geruschat, and Baker (2003) showed that the Itti and 
Koch (2000) model failed to predict fixation location above chance levels in a specific goal-
directed task unless goal-directed information was inserted into the model.  Participants in the 
study were asked to navigate an unfamiliar hallway and to “walk through the third door on the 
left” while wearing a head and eye tracker.  Recorded fixations were compared to those predicted 
by (a) an unmodified Itti and Koch (2000) model, (b) an Itti and Koch (2000) model weighted 
toward target features (vertical orientation and large spatial scale), (c) an Itti and Koch (2000) 
model weighted toward target location (the model was restricted to making fixations only on the 
left side of fixation), and (d) an Itti and Koch (2000) model weighted for target location and 
features. 

Analysis of model predictions and observed fixation locations was different from that done by 
Parkhurst et al. (2002) in that fixations were not assigned (x, y) coordinates but were assigned to 
regions of the scene, based on contiguous surfaces or objects.  Fixations were thus turned into a 
series of categories visited by observer and model predictions.  These sequences of categories 
formed the data to be correlated.   

Results indicated that the unmodified Itti and Koch (2000) model and the model weighted for 
target features performed no better than chance at predicting the regions of the display fixated.  
The model weighted for target location, however, performed better and predicted 35% of fixation 
regions.  The model incorporating both location and feature weighting fared best, predicting 
nearly 48% of fixation regions.  Together, these results show that (at least for simple goal-
directed behaviors such as walking toward a target) bottom-up and top-down information is 
required for a model to be able to predict human fixation performance. 
 

7. Other Topics of Interest, Not Previously Addressed 

7.1 Perceptual Psychology 

In considering what would make a good model of target acquisition, one can take the point of view 
that it would be an application of a model of basic vision or basic visual performance to a situation 
in which the observer seeks a target.  The perceptual psychology community has long been 
interested in these basic models and in the basic properties and processes underlying human vision.  
It is this author’s opinion that target acquisition models should attempt to incorporate as many of 
these basic principles as possible in order to be flexible and robust.  As such, this section of the 
report discusses aspects of vision and visual perception gleaned from the perceptual psychology 
literature, which have bearing on target acquisition.  The section includes discussions of color 
vision, motion perception, and the effects of visual transients. 
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7.1.1 Color Perception 

Color perception is a key aspect of human vision.  In order to account for how humans perceive 
color, any model must incorporate the following factors:  luminance, eccentricity, and target-
background luminance contrast.  Color perception is a function of the cone-type photoreceptors, 
which are sensitive to light only in the photopic range of luminance.  During low-light conditions, 
the cones do not respond and all vision is achromatic.  Cones are concentrated at the macula (the 
center 1 degree of the retina) and decrease in density quickly with eccentricity; thus, good color 
vision is afforded only for foveated targets.  (These two factors interact in that during low-light 
conditions, the poorest acuity will be at fixation.)  If the target and its background support have the 
same luminance and differ only by color, the target will not stand out clearly, and its motion (if it 
is moving) will be difficult to perceive.  In addition, a considerable fraction of the male population 
suffers from one kind or another of congenital color blindness, indicating that consideration of an 
impaired population may be justified in considering a general purpose model. 

Color is processed in the human visual system by three types of photoreceptors, each receptive to 
a broad range of wavelengths.  These three photoreceptors are interconnected in the retina by 
bipolar and horizontal cells and innervated ganglion cells representing combinations of 
excitatory and inhibitory center-surround pairs of red-green and blue-yellow sensitivity (Zeki, 
1993).  Substantial differences in ganglion cell anatomy and physiology between color-sensitive 
and luminance-only sensitive neurons result in psychophysical differences between human color 
vision and non-color vision.  (See Zeki, 1993, for a very readable overview of visual 
neurophysiology in general and color vision in particular.) 

Most models of target acquisition tend not to address color as a driving factor in performance.  
(Models of low observable [LO] targets and camouflage, such as CAMELEON26, do, but they 
are the exceptions.)  This lack of consideration in the modeling literature likely arises from two 
basic facts:  (a) the enemy would be foolish to send an oddly colored target into a battle since an 
object's color is relatively simple to change to fit an environment, and (b) electro-optical sensors 
such as I2, synthetic aperture radar (SAR), and FLIR have historically used non-color displays, 
so any color in visible light would be lost.  However, with the advent of fused sensor systems, 
full-color I2 devices (image intensifiers that use more than single-wavelength phosphor), and 
false color FLIR, it would seem that color may become more important in the future of target 
acquisition modeling. 

When one is considering color in perceptual psychology, there are some issues relevant to target 
acquisition modeling efforts: (a) detectability under equiluminance or near-equiluminance,  
(b) how color space is to be represented, (c) what levels of target acquisition are aided by the 
presence of color information, and (d) how color contrast or salience can be defined.  These 
topics are interrelated to a certain degree. 
                                                 

26CAMELEON stands for camouflage assessment by evaluation of local energy, spatial frequency, and 
orientation (Hecker, 1992). 
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Vision for colors displayed at equiluminance (i.e., figures differing from their background by hue 
alone) is known to be quite poor.  Theeuwes (1995) showed that search for a newly displayed 
stationary target whose color differs from its background is very slow unless the target also 
differs from its background in luminance.  When luminance differences are sufficiently large, the 
target will become readily apparent, even though its color may not be known in advance, thus 
demonstrating that color differences can drive attentional selection27.  However, search for a 
target of unknown color, even when its luminance is substantially different from the background, 
may be quite difficult if other elements of the scene are also uniquely colored.  That is to say, if 
the observer is looking for a target on the basis of color, he would have more difficulty finding it 
if it is not the only object with a unique color in the scene (Bacon & Egeth, 1994; Theeuwes & 
Burger, 1998; Duncan & Humphreys, 1989). 

In certain circumstances, color may be able to reduce clutter effectively.  Clutter, as defined by 
the number or density of confusing non-target objects within a scene, may be reduced if non-
targets are known to be of a different color than the target.  Egeth, Virzi, and Garbart (1984) 
demonstrated that non-targets of a particular color do not influence search response time if they 
are of a color that is sufficiently different from that of a known target.  Humphreys and Muller 
(1993) incorporated this factor into their SERR model of search, as discussed earlier.  This 
conceptualization of clutter has a certain circularity about it since if an object in the scene is 
confusable with the target, it is clutter; if it is not, then it is not clutter.  If the observer is aware 
of the color of the target ahead of time, then it may be argued that the differently colored non-
targets do not represent clutter.  Clutter metrics that do not take chromaticity into account would 
not be able to incorporate this ability of the visual system. 

Motion detection is also quite poor during conditions of equiluminance.  Cavanagh and Anstis 
(1991), Kooi and deValois (1992), Ramachandran and Gregory (1978), and others have 
demonstrated that objects defined only by color are difficult to detect.  Kooi and deValois argue 
that the neurophysiology of the parvocellular ganglion cells that carry color signals from the 
retina to the cortex, as well as the cortical projections themselves, account for this lack of color-
based motion perception.  Color information is sent through different parts of cortical areas V1 
and V2 to V4, where largely motion-insensitive color processing occurs.  Non-chromatic motion 
information, on the other hand, is processed in the medial temporal (MT)28 area.  Near 
equiluminance, however, motion perception quickly recovers as the luminance difference 
between target and background increases.  Since most target acquisition situations involve 
targets that would be close to equiluminance and similar in hue to their backgrounds (presuming 

                                                 
27The uniquely colored item may have lower luminance contrast than the non-targets.  It need only be different in 

some way for its color to become important. 
28The underlying logic of this segregation was postulated by Mishkin, Ungerleider, and Macko (1983) as the 

separate processing of “what” information (related to form and identity) includes color and “where” information 
(related to where the object is and where it is going) that does not. 
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that appropriate CCD measures are in use), their motion signals may be attenuated compared to 
the motion of a more obvious target. 

Research in experimental psychology typically uses (x,y) CIE (Commission Internationale de 
l’Eclairage) color space plus luminance to describe colored stimuli.  Other choices are (u’,v’) 
color space, red, blue, green; hue, saturation, brightness; or cyan-yellow-magenta-black 
coordinates, and weights of R/G and B/Y opponent pairs.  Models of target acquisition tend to 
use (x,y) space or opponent pairs (e.g., ORACLE and GTV).  Although photoreceptor responses 
are well characterized, there is some disagreement about the behavior of the color opponent cells.  
The basis of this disagreement comes from the fact that within a population of, say, R+/G- 
center-surround cells, there is much variability in the receptive field characteristics and the 
response magnitudes near and above thresholds, indicating that current physiological 
understanding may be inadequate to model the system effectively. 

Recent research by Olds, Cowan, and Jolicoeur (1999) indicates that mapping stimuli into 3-D 
color space allows predictions to be made about their salience and distinctiveness.  The authors 
found that targets were readily detectable in a background of differently colored non-targets if 
the coordinates of the colors of the targets and non-targets were planar separable29.  Eastman 
(1968) similarly used distance between points in (u’, v’, w’ [luminance]) space as a definition of 
color contrast.  Color contrast has also been modeled by Frome, Buck, and Boynton (1981) as an 
equivalence term for luminance contrast.  That is, the overall contrast of a target is modeled as a 
linear combination of its achromatic, R, G, and B color dimensions. 

Thus far, color has been mentioned only in its role in detection of a static or moving target.  
Research from perceptual psychology indicates that, inasmuch as real-world objects are 
concerned, color plays little role in recognition or identification30.  That is to say, the addition of 
target color information when sufficient information already exists in the image for us to 
recognize the target does not aid recognition performance.  By far, the best example of this is the 
work by Biederman and Ju (1988), which demonstrates that in agreement with RBC theory, the 
surface characteristic of color does not improve response time to name a common object.  Even 
an object readily associated with a color, such as a banana, is as quickly recognized in a line 
drawing as a full color picture. 

Biederman and Ju’s finding is not surprising, given that first, objects tend not to be defined by 
color alone and second, much of what the color vision system does is provide color constancy, 
whereby a colored object will appear to be the same, regardless of the source of illumination 
(Zeki, 1993).  This so-called “discounting of the illuminant” means that the physically measured 
color spectrum of a surface does not correspond one to one with an observer’s perception of the 

                                                 
29The “points” in color space actually correspond to Gaussians with steep sides; therefore, linear separability of 

the peaks does not ensure visual distinctness of the objects. 
30Most research uses line drawings for object recognition.  However, more powerful PC-based rendering 

software is making the use of solid models more common. 
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color.  Implications of this finding may be important for observers who view potential targets in 
two very different lighting conditions.  Models would have to compensate for the illuminant in 
order to accurately predict performance in both conditions. 

7.1.2 Motion 

Most models of target acquisition focus on static images and the static characteristics known to 
affect performance (e.g., clutter, contrast, size, resolution, range, atmospheric interference).  
Electro-optical models or front ends to models (such as TARGAC) may include the temporal 
response characteristics of the sensor or display, but the treatment of time dependence in such 
models typically relates to how the sensor addresses changes in the scene over time rather than 
targets that may be moving.   

The two visual effects of a target moving relative to its background are a motion signal arising 
from the target itself, and the flicker-like changes in contrast around the borders of the target 
(e.g., if a light target moves over terrain that is alternatively dark and light, it may appear to 
flicker with respect to its background).  The first effect is well studied and has been instantiated 
into several models; the latter has not been modeled successfully. 

The human perception literature is useful when we consider how motion can influence 
performance in target acquisition.  Motion and objects defined by motion (such as a cryptically 
colored animal that suddenly moves) are known to be especially good at directing visual 
attention (Hillstrom & Yantis, 1994; Yantis & Egeth, 1999; Wolfe, 1994).  That is, a moving 
stimulus only needs to be a fraction of the physical intensity (e.g., luminance, size) of a static 
stimulus in order to immediately become visible.  Some models (discussed next) take advantage 
of this fact by using motion to adjust the effective contrast of the moving target.  That said, 
however, it is important to note that the effect of motion on detectability is not constant; instead, 
it interacts with contrast.  If the contrast of a moving target is very low, it will remain quite 
difficult to see, regardless of its speed (Mazz, Kistner, & Pibil, 1998; Meitzler, Kistner, et al., 
1998). 

Of particular importance to the human visual system is the appearance of a “looming” stimulus 
whose motion is toward the observer (Schmidt, 1997; Yantis & Hillstrom, 1994).  The only way 
that current models of target acquisition have incorporated looming motion has been to address 
the resultant increase in size and contrast of the object.  However, the size increase necessary for 
looming objects to capture attention is quite small, so a simple contrast increase might not be 
adequate to account for the phenomenon.  Therefore, looming should be treated as a special case 
of motion. 

In addition to looming stimuli, two important aspects of motion perception are the ability of the 
visual system to segregate objects that are not moving from those that are (Watson & 
Humphreys, 1999), and the detection of objects that are moving in a way inconsistent with a 
moving observer viewing a field of stationary objects (Kaiser & Montegut, 1995).  That is, if 
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there are objects at a variety of ranges from the observer, their motion with respect to the 
observer (actually, about his point of fixation) will be determined by (a) the range from the 
observer, (b) the speed of the observer, and (c) whether the objects are stationary or moving.  
Kaiser and Montegut determined that humans are particularly sensitive to objects whose motion 
is inconsistent with the expected motion parallax at their position.  In other words, humans are 
good at spotting moving objects when they themselves are moving. 

This ability comes into play in target acquisition when the observer himself is not always 
stationary; rather, the observer may be moving.  Both of these aspects of perception relate to 
situations when an object in a scene is moving differently from other objects, indicating that its 
retinal velocity is different from what a stationary object at that location in space should be.  
Therefore, the object is self-propelled and is likely of military interest.  No models thus far 
encountered have taken relative motion signals into account as they relate to such implied depth-
related motion parallax, although simple relative motion signals should be able to be modeled 
when the frame of reference of the scene is changed from stationary to moving. 

Models that account for motion tend to relate it to the probability of detection instead of 
discrimination since, if anything, the structural detail of a moving object will decrease because 
of the loss of high spatial frequencies (blur).  Electro-optical systems are particular susceptible to 
blur, depending on the integration time of the sensor and the sampling and display rates.  The 
effects of blur induced by motion are considered in some models (e.g., GTV). 

7.1.2.1 Early Models of Motion 

An early, empirical, and somewhat cognitive inclusion of motion into search performance was in 
Bishop and Stollmack’s (1968) DYNTACS model.  DYNTACS incorporated the effect of motion 
as an increase in the probability of detection within a time window, Δt.  The model parameters are 
in terms of range and linear velocity, and the model included a term for “terrain complexity” 
which corresponds to possible paths in the scene along which a moving target may travel.  As 
mentioned earlier, the TARGAC model is based more than most models on atheoretical data fits, 
indicating that its results may not be generalizable to other studies or situations. 

Rogers (1972) found that the (luminance) contrast threshold of a moving object remains relatively 
constant as the retinal eccentricity increased to around 55 degrees.  In order for a stationary target 
to remain barely visible as its eccentricity increases over the same level requires a five-fold 
increase in contrast.  (Note that for a small target, the change in receptive field size with eccen-
tricity cannot account for this finding.)  Peterson and Dugas (1972) modified the search term (P1) 
in Bailey’s (1970) model to account for motion by increasing the size of the hard shell lobe as a 
function of angular velocity: 

( )245.01
0

ω+= CAA gg  

in which Ago = typical glimpse aperture (hard shell lobe diameter), 

  C = contrast of target with background, and 
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  ω = angular velocity of target with respect to the observer. 

(Note that this instantiation includes the contrast-motion interaction mentioned earlier when the 
adjustment in the glimpse aperture weights contrasts very heavily by angular velocity, but when 
contrast is near zero, the magnitude of the effect of velocity will be negligible.)  Presumably, 
such a simple modification could be made in a soft shell visual lobe calculation, possibly by the 
probability-to-detect drop-off becoming much shallower with eccentricity.  Indeed, an increase 
in soft shell lobe is exactly what Rogers’ result seemed to indicate. 

7.1.2.2 More Recent Approaches to Modeling Motion 

Meitzler, Kistner, et al. (1998) and Mazz, Kistner, and Pibil (1998) investigated the effects of 
motion on target detection in controlled laboratory experiments.  Findings from both studies 
indicated that angular velocity was as important a factor as, or perhaps even more important a 
factor than, range (which determines target size) or contrast alone in the detection of a target.  
However, the effect of velocity was not independent of other factors in the study.  Mazz et al. 
found that velocity interacted significantly with range and with range and contrast.  Meitzler  
et al. found that velocity interacted significantly with range and with the background used in the 
studies (backgrounds were digitized images of different clutter levels).  Thus, it was clear that an 
isolated velocity term would be insufficient for a model to account for the effects of target 
motion. 

NVESD’s ACQUIRE model (Tomkinson, 1990) was modified by Meitzler, Kistner, et al. (1998) 
to include a parameter for target velocity by making the probability of detection a function of 
target image size and the target image size necessary for 50% ensemble detection of the target: 
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in which A = target angular extent, 

  Ac = target angular extent necessary for 50% ensemble detection, and 

  E = 2.7 + 0.7(A/Ac). 

This function is purposefully similar to the TTPF used in other NVESD models.  However, the 
angular extent necessary for 50% performance (A50) is itself considered a function of target size, 
contrast, and angular velocity: 

dcVbCaTA aec +++=  

in which Te = target angular extent, 
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  C = target contrast31, and 

  Va = target angular velocity. 

Although all three terms (and their interactions) are known to affect performance, the conditions 
in which one factor may be more important than or may interact with others are not clear.  There-
fore, the authors did not attempt to fit the constants.  Instead, Meitzler et al. used a fuzzy logic 
approach (Zadeh, 1965) to derive fuzzy rules governing the influence of these factors in different 
conditions.  One half of the data derived from a laboratory study in which target size, contrast, 
and angular velocity were controlled was used as input into fuzzy inference neural network (The 
MathWorks, 1995) to derive rules against which the other half of the data was tested.  The 
authors report that the correlation between derived fuzzy rules and the test data was 0.95. 

Another way that motion has been incorporated into models of target acquisition has been to 
include human visual physiology, as related to motion perception, into models based on early 
visual processes.  How humans process motion information has been the subject of active 
research in the vision literature for decades.  Studies that may have some bearing on models of 
target acquisition include those focused on the detection of motion signals among noise (e.g., 
Snowden & Braddick, 1991; Verghese & Stone, 1995; Verghese, Watamaniuk, McKee, & 
Grzywacz, 1999), those attempting to derive the basic motion features to which the visual system 
is sensitive (e.g., Adelson & Bergen, 1985), and those testing motion processing as related to 
known visual psychophysics and physiology (e.g., Grossberg & Rudd, 1991). 

7.1.3 Transient Visual Events 

Soldiers in the field routinely encounter situations in which events occur that are only visible for 
a brief time, such as the glint off a sight, a muzzle flash, the momentary appearance of an object 
from behind an occluder, or an explosion.  The presence of such transient visual events can aid 
or hinder search for a target. 

Before we discuss the specifics of how transients can affect search and target acquisition, it is 
necessary to understand how the visual system responds to such stimuli during search.  It is 
obvious that before an observer can acquire a target, some representation of the target must exist  
in the observer’s visual system.  At issue is the amount of information accumulated over time as 
the observer views a scene.  It has long been argued that the representation is an “integrative visual 
buffer” that collects information and becomes progressively more detailed over time (Rayner, 
McConkie, & Ehrlich, 1978).  There actually is no such buffer and very little information about 
objects in a scene remains when the scene disappears or when we look away (see Vaughan, 1998, 
however, for evidence that some information does persist).  This effect can be seen in almost any 
situation:  close your eyes, turn around, and open your eyes for 1 or 2 seconds.  Then close your 
eyes and describe as much of the scene as you can.  You will probably only be able to recall details 
of a handful of objects. 

                                                 
31The contrast term does not account for the flicker-like effect of rapid changes in target contrast as it moves 

across terrain. 
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The reason why so little information persists is that our mental representation of the scene is 
actually very sparse, consisting of only four or five objects at a time (Rensink, 1996).  The 
mechanism that selects objects from the scene, binds their features properly, and inserts them 
into this representation is selective attention.  Objects in the scene that are clearly visible, yet 
unattended, are not perceived consciously or acted upon consciously (Mack & Rock, 1998).  
O’Regan (1992), Rensink (1997), and Minsky (1985) have argued that observers are not 
consciously aware of the sparseness of their mental representation because the scene itself serves 
as an external memory.  In order to acquire information about a scene, the observer must focus 
his attention on a part of the scene, and that part is then encoded into the mental representation. 

The role that selective attention plays in conscious perception is the key to understanding how 
transient visual events affect target acquisition.  Search for a target includes a series of eye 
movements to locations in the scene similar to a target along some dimension or to locations as 
determined by a top-down scan path.  It is in the first case that transients have their effect, since 
attention is presumed to precede eye movements to a location in the scene that is of interest.  
This “spotlight” of attention can readily be deployed to salient or conspicuous regions of the 
scene (Yantis & Egeth, 1999); thus, target conspicuity may determine the probability that the 
target will be attended and fixated.  Transient visual events have the ability in certain circum-
stances to disrupt this salience-based attentional deployment system (e.g., Yantis, 1996; 
O’Regan, Rensink, & Clark, 1999) and involuntarily summon or “capture” attention to their 
locations. 

If the transient event occurs at the location of the target (such as a glint or muzzle flash), then 
such a transient will increase the probability that the target will be fixated.  In addition to a 
sudden increase in luminance or contrast, the appearance of a new perceptual object (e.g., when 
an object suddenly becomes visible as it appears from behind an occluder) is also known to 
capture attention (Hillstrom & Yantis, 1994; Yantis & Hillstrom, 1994).  Attention may be 
captured even if the contrast of the new target is not sufficiently high to be judged as salient or 
conspicuous if it had not just appeared.  An interesting aspect of attentional capture is that it can 
occur even if the scene is highly congested.  Therefore, any model that incorporates clutter into 
dynamic scenes must treat visual transients as a special case in which the effects of clutter are 
strongly attenuated. 

Attention is not always captured by transient events, however.  As is the case with moving 
objects, transients will only capture attention when the increase in luminance or contrast or when 
the contrast of the new object is sufficiently high32.  Enns and Austen (1999) found that low 
contrast targets failed to capture attention in such circumstances, but moderate contrast targets 
did so quite effectively.  Valeton and Bijl (1995), in evaluating the TARGAC model on data 
from the Battlefield Emissive Sources Trials (BEST) under the European Theater Weather and 

                                                 
32Note that the increase in luminance or contrast associated with the transience will render it far more likely to 

capture attention than a static object with the same high luminance or contrast (Yantis, 1996). 
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Obscurants (TWO); NATO, 1990) studies, found that targets that appeared suddenly were 
particularly difficult to see.  The targets tended to be small and of low contrast.  The reason why 
observers in the BEST TWO study found these targets particularly difficult is that in the low 
contrast conditions, they were no more salient than other targets and were available in the scene 
for less time. 

In addition to transient events failing to alert the observer to a potential target, they may also 
hinder search.  If a transient event occurs at a non-target location or at an already acquired target, 
attention may be captured, thereby disrupting a salience- or conspicuity-driven search of the 
scene.  O’Regan, Rensink, and Clark (1999) demonstrated that when a “mud splash” (a convex 
gray region) was repeatedly added to and taken away from a scene, the time required to search 
for a target increased dramatically33.  Even when the target itself represented a transient event 
(such as a sudden movement or color change or a sudden appearance of a new object), the more 
salient mud splash disrupted search. 

In target acquisition situations, the effect of irrelevant transients is likely to be manifested by a 
change in search strategy from an efficient one to an inefficient one.  Target conspicuity has been 
the result of much study because it is a good predictor of search performance.  The reason why 
conspicuity drives search performance is that the attention system is able to quickly select 
conspicuous regions in the scene during search.  Other, less conspicuous regions are not searched 
because targets are deemed less likely to be in them.  When search is difficult, a more systematic, 
top-down search strategy is employed that involves a conscious pattern of searching the scene, 
often including parts of the scene where no target is likely to be.  In the presence of transients, an 
analogous strategy is employed.  O’Regan et al. found that repeated mud splashes forced subjects 
to abandon a conspicuity-driven search and adopt a slower, systematic search.  Search models 
that include transients may benefit from the addition of a systematic search that occurs when 
such repeated transients occur. 

7.2 Multiple Targets 

War game simulation as well as real-world combat situations are not exclusively single-target 
scenarios.  Often, a Soldier is confronted by several targets, all of which may be obscured, 
camouflaged, or otherwise difficult to acquire.  The issues of how to model target acquisition in 
such an environment are complicated because additional assumptions must be made regarding 
what the observer’s task is, how search progresses, and how limiting conditions arise.  In 
addition, models must be altered differently, depending on whether they predict individual or 
ensemble performance. 

Looking first at the task, a model may predict the probability of first acquisition (i.e., the 
probability that any target will be acquired) or the probability that multiple targets are acquired.  
The simplest solution to the problem of multiple targets would be to work within the framework 
                                                 

33This research was funded by Nissan Motor Corporation.  The researchers were interested in the effects of 
material splashed onto car windshields on a driver’s ability to spot important changes in the scene, such as a person 
stepping into the roadway. 
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of individual performance prediction.  In such a framework, the only additional assumption 
needed would be a specific statement of search-quitting criterion.  For example, first-detection 
performance could be modeled with no changes in a single-target model except that the 
probability of a target within a glimpse would increase.  (Of course, depending on the model, the 
presence of multiple targets may also affect factors such as fixation selection, decision criterion, 
etc.)  Predicting multiple acquisition performance requires the simulated observer to know how 
many targets there are and to stop after they are all acquired or to place a time limit on the search 
process and let it continue until the time limit.  In either case, the model must keep track of 
targets that have already been acquired so that a single target will only be acquired once.  (This 
addition of a memory component to search is built into some models, such as GTV, but is 
lacking from others, such as Nicoll & Hsu’s [1995] model.) 

Search models from perceptual psychology rarely use multiple targets except as a test of the 
serial or parallel nature of a purported search process by examining a phenomenon called 
redundancy gain (e.g., Egeth & Mordkoff, 1991)34.  The lack of interest in multiple target search 
may also stem from the fact that these models are all based on individual performance and, as 
mentioned before, are easily extendible to multiple target situations. 

Predicting individual performance in a static detection (i.e., non-search) task requires the targets 
in question to be within the observer’s search lobe.  That condition being met, assumptions must 
be made regarding limits to an observer’s performance in the task.  Decisions made on the basis 
of signal detection theory (e.g., based on SNR or SCR) may proceed in one of two ways in multi-
target scenarios.  First, the task may be redefined as several independent decisions (one for each 
target) with a logical OR determining the probability of first acquisition.  Second, the signal and 
noise terms must be redefined to take into account contributions from all the targets; then a 
single global decision must be made to judge if the signal arose from a target (or targets) or 
noise. 

Predicting ensemble performance in a static search is considerably more daunting.  The difficulty 
arises from how asymptotic performance terms such as P∞ are conceptualized.  That is, depending 
on what it actually means that a particular target in a particular scene will be acquired by P∞ of an 
ensemble of observers, the predictions for how P∞ changes with the number of targets will be 
different.  Six possible meanings of P∞ are discussed. 

Rotman, Gordon, and Kowalczyk (1989) considered three possible reasons why ensemble 
detection performance is imperfect, given infinite time. 

1. The ensemble of observers is strictly ordered in terms of target acquisition competence.  
That is, some of them are simply better at detecting targets than others.  These observers 

                                                 
34The issue of whether visual search progresses in a serial or parallel manner has long been a contentious issue in 

perceptual psychology (e.g., Palmer & McLean, 1995; Townsend, 1971, 1990) since the processes underlying 
parallel and serial search differ dramatically.  Redundancy gain is but one technique for obtaining data that may be 
able to tease apart the serial/parallel distinction.  In terms of target acquisition modeling, the difference is not as 
important because the very fact that serial and parallel processes can mimic each other in RT or accuracy measures 
indicates that neither type of model is likely “better” at predicting relevant performance. 
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will be consistently better, regardless of the target or background (i.e., they will require 
fewer cycles on target to acquire the target).  Silk (1997) refers to this explanation of P∞ as 
the “observer-only” account. 

2. Observers are equivalent in a statistical sense, but the responses to any given target will be 
stochastic (within the bounds that an ensemble must perform at a level of P∞).  Some 
observers will confuse the target with background clutter and will not evaluate it any 
further while other observers will not make this confusion.  In this case, observers who 
cannot detect a target in one situation may be able to do so in another.  Silk (1997) refers  
to this explanation of P∞ as the “observer-target” account35. 

3. Observer performance will decrease over time because of mental weariness.  Some 
observers are able to acquire the target within a critical period and some are not. 

Rotman et al. (1989) derived predictions on the basis of these three assumptions and compared 
them to data based on images from Hughes Aerospace (Scanlan & Agin, 1978). The proportion 
of the population of observers who were able to detect targets of varying degrees of difficulty 
strongly favored either explanation 2 or 3 over explanation 1.  The authors point out, however, 
that the number of observers in the study reduced the statistical power of their tests to the point 
that no explanation could be eliminated definitively. 

In addition to the three explanations mentioned, common sense tells us that a combination of 
these factors is probably occurring:  Some observers are better than others, and some targets (for 
reasons unknown) will be more difficult than others, regardless of how facile a target acquirer 
any given individual is.  Whether mental weariness comes into play is unclear.  Likely, in the 
case of testing the explanations with empirical data, weariness would not be a factor, given the 
controlled situations in which the data were collected.  Combinations of these explanations have 
been termed “hybrid” models by Silk (1997). 

Silk (1997) analyzed a data set from O’Kane, Walters, and D’Angostino (1993) to determine 
whether a “hybrid” explanation of P∞ could be based on the deterministic observer-only and 
observer-target stochastic processes.  He found that those two factors, plus a degree of 
uncertainly that exists as a result of uncertainty in target signature computation36, completely 
defined observer performance.  In other words, given the inherent uncertainty in determining 
target characteristics, observer performance can be described as a combination of observer-only 
and observer-target explanations. 

In addition to Rotman et al.’s (1994a) explanations, Nicoll (1994) put forth three additional 
possibilities for P∞ that have bearing within a neoclassical search framework.   

                                                 
35The Army combat model JANUS (not an acronym) assumes that P∞ is purely observer-target based. 
36Silk (1995) demonstrated that the modeling uncertainty in Johnson-like models is statistically unbiased.  That 

is, the uncertainty in predictions of target detectability is independent of the actual detectability.  
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4. There is another state in the search process called “quit,” and the corresponding rate, Q, at 
which this state is entered from any other state.  The probability of quitting as a function of 
time is then very much like the probability of fixating a target as a function of time, except 
that it is the linear combination of three rather than two exponentials.  The number of 
targets detected before quitting (rather, the distribution of such trials) determines P∞.   

5. The number of visits to a target may be restricted (possibly because of a temporal cut-off or 
a moving FOR). 

6. Assume that the Markov process is not memoryless but that the amount of information 
accumulated during visits to the target decreases over time.  If the asymptotic amount of 
information obtainable about the target is below that required to detect it, then detection 
cannot occur. 

Nicoll (1994) has not offered any data to support any explanation over the others but presented 
them as examples of the flexibility of the neoclassical framework. 

Other issues related to the multi-target scenario relate to the expectations of the observer and the 
difference between the targets.  For example, if there are two very different targets in the scene, 
the observer must know that there are two (according to many models that base their predictions 
on a known target representation) or must base his search on a general metric or search strategy 
that makes no assumptions about the appearance of the targets.  Also, if the subject is expecting 
to see or has been trained in a target-rich scenario, his performance in a low-contrast multi-target 
scenario will be different from someone trained in a different scenario (e.g., Doll & Schmieder, 
1993).  Specifically, the former observer will be more likely to hazard many false alarms 
whereas the latter will be more conservative.  More is said about dependent measures other than 
Pd in a later section. 

Classic studies in perceptual psychology have shown that if the various targets are similar to 
each other in appearance and are different from non-targets in appearance, then little training will 
be required for search performance in the multi-target situation to be as good as in the single-
target situation (Schneider, Dumais, & Shiffrin, 1984).  However, as targets become different 
from each other and more similar to non-targets, training will take much longer to achieve the 
same level of performance (Schneider et al., 1984; Duncan & Humphreys, 1989). 

7.3 Blur, Noise, and Obscurants 

Different factors limit human target acquisition performance in threshold and super-threshold 
situations.  At or near threshold, human performance is noise limited; above threshold, human 
performance is contrast limited (Lloyd & Sendall, 1970).  The role of noise in target acquisition 
is not limited to the threshold of our sensory system, however.  The same limits to detection of 
visible form apply when noise is relative to signal strength.  That is, when noise is high, human 
perception is noise limited; when noise is low, human performance is contrast limited. 
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Noise in target acquisition comes from a variety of sources:  the absolute threshold of vision for 
a dark-adapted observer is determined partly by quantum noise (probabilistic absorption of 
photons by photochemical molecules) and neural noise (photochemical breakdowns and firing of 
neurons in the visual system).  For the military observer, visual noise of interest typically comes 
from the display or the sensor on and through which he is viewing an image of the scene. 

Noise varies, depending on the type of sensor.  FLIR sensors are susceptible to noise from IR 
atmospheric emissions and scatter, thermal noise within the sensor, and scintillation noise 
because of turbulence of the air along the line of sight of the sensor.  The latter noise can take the 
form of blur (the loss of high spatial frequency information) if the integration time of the sensor 
is long or motion artifacts (small moving images that do not correspond to objects moving in the 
field) if the integration time of the sensor is brief and its spatial resolution is high.  Image 
intensifiers do not suffer from so many sources of noise because the wavelengths of light 
intensified by the sensor do not interact so readily with particulate matter in the air column37. 

The effects of atmospheric noise in FLIR sensors are well understood and modeled quite 
effectively (e.g., the TARGAC front end for NVESD static detection models).  However, the 
effect of noise on human decision making is not as clear. 

Blur, the loss of fine spatial detail (i.e., an attenuation of high spatial frequency information), is 
well understood, in theory at least.  An across-the-board degradation in performance is expected 
for all levels of target acquisition because the loss of detail is akin to a reduction of contrast of 
targets to the point that the modulation of their fine details falls below threshold.  Blur can be 
instantiated in a model with a digital blur operation on an input image (such as Gaussian blur) or 
by modulation of the Fourier components of an image with a high-frequency-attenuated 
modulation transfer function.  The resulting decrease in effective contrast can be traced along a 
TTPF to determine the concomitant loss in performance. 

Aleva and Kuperman (1997) evaluated the effects of various kinds of scene degradation on the 
detection and recognition of a variety of Army vehicles at various ranges using a signal detection 
paradigm38.  The authors manipulated scenes by increasing scene modulation (reduction in 
contrast), blur, and white noise.  The authors noted two effects of significance:  first, modulation 
and blur interacted (as one would expect).  Second, the effect of blur and modulation was 
manifested as a decrease in hit rate only; false alarm rate remained constant.  From these results, 
it was concluded that the sensitivity of the observer was decreasing as a result of the image 
degradations.  Such a result is consistent with the loss of information or in signal detection terms, 
the decrease in SNR in conditions of blur and modulation. 

                                                 
37Stereoscopic image intensifiers, with an intensifier tube for each eye, are even less susceptible to noise.  The 

scintillation noise in the tubes is uncorrelated, and the visual system has little trouble discounting it from the 
otherwise stereoscopic image of the scene.  The per-item cost of such systems remains prohibitive, however.  

38The manuscript by Aleva and Kuperman serves as an excellent review of basic visual psychophysics and of 
signal detection theory.   



 

68 

Obscurants make target acquisition difficult by blocking the electromagnetic radiation reflected 
or emitted by the target so that it is never detected by a sensor.  Unlike noise or blur, however, 
obscurants have a temporal character since the consistency, density, and amount of obscurant 
between the sensor and the target are not uniform over time.  Rotman, Gordon, and Kowalczyk 
(1991) extended the NVESD static detection model to account for time-varying obscurant smoke 
by assuming that as the smoke obscures more target information, the proportion of observers 
who will be able to detect the target will decrease.  The authors modeled the performance for an 
ensemble by estimating a mix of performance for an unobscured target and a steady state 
obscured target.  The main predictions of the model are that time-varying obscurant performance 
will reach an asymptote at the level for an unobscured target.  The model has been applied to 
engineer specifications of several fielded FLIR sensor systems, but it has not yet been validated 
by human data from field tests. 

7.4 Measures of Performance Other Than Pd 

The most influential modeling concept in the past 40 years has been the Johnson criteria and the 
corresponding TTPF.  The resulting static target discrimination model incorporated into several 
NVESD models is considered one of the most common (and most effective) models for 
ensemble performance.  However, the model only makes predictions of a single variable in a 
single type of situation:  Pd, the probability of detecting a target when one is present.  Other 
performance measures can be inferred if one makes assumptions about how a decision is made 
(e.g., Rotman et al., 1991), but the Johnson criteria are by themselves limited in how they inform 
us about the process of target acquisition. 

Over the years, different tasks and different analyses have led to several ways of characterizing 
observer performance in target acquisition tasks.  This section discusses a number of them: 
Schmieder and Weathersby’s (1983) Pacq measure, the false detection percentage (FDP), 
response time, the determinants of performance according to signal detection theory (Phit, PFA 
(FAR), d′, A′, and β), and real-time eye movement data. 

Although popular models such as ACQUIRE predict search performance over time, they do so 
by predicting Pd as a function of time only.  Such a measure is useful, especially for war game 
simulation in which it is important to predict the detectability of a target when only a certain 
amount of time is available to scrutinize the scene.  However, this measure in and of itself is 
limited in how well it predicts overall observer behavior.  The primary shortcoming of the 
measure is that it does not address observer false alarms (i.e., reporting a target when none was 
present).  False alarms, also called false detections in some analyses, can be further subdivided 
into cases when no target was present and cases when a target was present but the observer 
mistakenly reported that a non-target element was the target.  Such a distinction can be made 
when an observer is forced to localize a target in a scene in addition to reporting merely its 
presence, or it can be inferred from observer response and eye movement data.  (The potential 
value of eye movement information is discussed shortly.) 
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In their analysis of observer performance in cluttered environments, Schmieder and Weathersby 
(1983) determined that Pd might not always be a meaningful measure since a high rate of false 
alarms is typically observed in conditions of high clutter.  The authors proposed instead the 
measure Pacq, the probability of acquisition, defined as the probability that an observer can 
correctly acquire a target after n+1 investigations in which n false targets were first correctly 
rejected: 

∑
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in which P(FA) = fixed probability of false alarm (based on clutter level), 

  Pd = probability of detection, and 

  n = the number of objects investigated when a target is located. 

This measure of performance assumes that clutter attracts eye movements in a discrete manner.  
It also presumes that clutter's effect is on the probability of false alarms and to a lesser extent, on 
the probability of detection, as determined by the SCR. 

A further problem with using response time and a single accuracy measure (e.g., Pd) is that it 
ignores how an observer makes a decision.  For example, a speed-accuracy trade-off may occur.  
Speed-accuracy trade-offs result when an observer with a lax criterion for deciding that a target 
is present responds faster and makes more errors than an observer with a more stringent criterion, 
who responds more slowly and makes fewer errors.  This pattern of errors and response times 
may occur even if the observers are equally good at detecting the target.  The difference in 
decision criterion not only varies between observers (see, e.g., Rotman, Gordan, & Kowalczyk, 
1989, for an analysis of performance based on this assumption) but within observers as a 
function of training, stress, fatigue, expectation, the costs and benefits (“payoffs”) of rendering a 
decision, and concurrent task load.  As such, it is impossible to determine how sensitive an 
observer is to the presence of a target by looking solely at RT and Pd. 

The method used most often to separate the contributions of observer sensitivity and criterion in 
making a decision is called Signal Detection Theory (SDT) (Green & Swets, 1966).  Briefly, 
signal detection theory asserts that the detection of a signal requires an observer to be able to 
distinguish between noise inherent in the sensory system and a signal added to that noise.  Signal 
and noise distributions are assumed to be normal and have equal variance.  An observer bases his 
decisions on sensitivity (his visual system’s ability to distinguish between the noise and the 
signal-plus-noise distributions) and the criterion that he sets for determining if a given sensory 
signal arose from the signal or noise distribution.  A sensory signal whose strength is above the 
criterion will be reported as a signal; one whose strength falls below the criterion will be reported 
the absence of a signal.  See MacMillan and Creelman (1991) for an excellent introduction to 
SDT. 
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The assumption that signal and noise distributions are normally distributed (with the same 
standard deviation) allows the decision criterion, β, to be separated from the observer sensitivity, 
d′39.  In order to perform an SDT analysis, the hit rate, defined as P(target reported|target 
present), which is the same as Pd for a single subject) and the false alarm rate (FAR), defined as 
P(target reported|target absent), is needed.  Further assumptions may be needed for us to perform 
SDT analysis on data in which false alarms include non-targets misidentified as targets when 
targets were present elsewhere. 

SDT has been used extensively to examine target acquisition.  (For a more thorough review of 
SDT analysis as it applies specifically to target acquisition, see Wilson, 1992.)  Of particular 
interest is how false alarms are affected by various factors.  As mentioned earlier, Aleva and 
Kuperman (1997) used SDT to evaluate the effects of modulation, blur, and noise on target 
acquisition performance.  Their results showed a decrease in hit rate but no change in FAR as 
scene quality decreased, indicating that subjects in the study did not shift their criteria but were 
becoming less sensitive to the targets. 

Doll and Schmieder (1993) were the first study to look at the effects of clutter, as measured by a 
quantitative metric, on false alarm rate40.  The authors used a measure of clutter called the SCR, 
which is related to the gray-level statistical variance metric (see the section of this report on 
clutter and conspicuity for details).  The authors looked at overall probabilities of detection and 
FAR and found that as SCR decreases (i.e., as clutter increases), observers shift their criterion to 
produce more “target present” responses, thus increasing the FAR. 

Grossman, Hadar, Rehavi, and Rotman (1995) also used SDT to investigate how clutter affects 
FAR.  The authors defined noise to be the strength of a clutter metric (the probability of edge 
metric or Schmieder & Weathersby’s [1993] SCR metric) and modeled search performance over 
time as a function of per-glimpse SCR.  Glimpses were assumed to be independent and attracted 
to regions of high clutter.  Their results indicated that the average accumulated number of false 
alarms increased as a linear function of clutter, the slope of which was determined by the time 
permitted for search.  That is, the false alarm rate within each glimpse was constant.  The 
difference between their results and those of Doll and Schmieder were likely attributable to 
assumptions made by Doll and Schmieder to predict overall FAR rather than examining FAR as 
a function of search time.  The hit rate (Pd) decreased as a function of clutter, indicating that 

                                                 
39If normality is known to be violated or cannot be evaluated directly by normalized receiver operating 

characteristic curves (see MacMillan & Creelman, 1991), then a non-parametric measure of sensitivity, A’, may be 
calculated (Pollack & Norman, 1964): 
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40The Doll and Schmieder (1993) paper contains a good introduction to SDT and how it applies to target 
acquisition in cluttered environments.  The paper also addresses the effects of display resolution and its interactions 
with clutter. 
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while subjects kept their criteria relatively constant, they were less sensitive to targets that 
appeared in cluttered scenes.  The authors also argue that time reduces the decision criterion.   

Silk (1995a) argues that scene-based characteristics such as blur and clutter are not the only 
determinants of observer decision threshold.  In a study involving detection of altered IR target 
signatures (i.e., digitally modified to reduce the signature), observers were more likely to 
generate false alarms in a test situation if they had been trained in a target-rich environment.  The 
hit rate of the observers was the same across training situation, indicating that observers shifted 
their decision criteria downward when they thought more objects in the scene were likely to be 
targets. 

In addition to being able to disentangle the effects of sensitivity and decision criterion, the use of 
methods amenable to signal detection analysis has advantages of its own.  First, such methods 
are likely to be standardized across studies, so researchers may be better able to relate their 
theories and analyses to existing data rather than having to run additional studies.  Also, forcing 
observers to perform a two-alternative forced choice (2AFC) or a detection-plus-confidence task 
rather than simple go/no-go detection task or deliberately manipulating pay-offs for the different 
types of errors (misses and false alarms) gives the experimenter additional information about the 
nature of the discrimination.  Valeton and Bijl (1995) found, for example, that subject 
performance was better in a 2AFC task (picking which of two trials contained a target) than a 
go/no-go task (only reporting if a target is seen). 

A FAR-like measure, the FDP, has been used successfully within the framework of the 
ACQUIRE model to explain the variability in N50 with scene clutter.  FDP is defined as 
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Mazz (1998) noted that much of the variability noted in empirical N50 resulting from different 
levels of clutter can be accounted for if one also accounts for the false detection percentage.  
FDP is analogous to and largely independent from N50.  That is, FDP and N50 can vary freely 
within a study, indicating that both quantities should be taken into account when one is 
performing an analysis of the effect of clutter41. 

Eye movement data from search tasks are an often-overlooked source of information for how 
subjects perform target acquisition experiments.  Eye movements during search can provide 
insight into (a) the evaluation of local metrics of clutter, conspicuity, distinctness, and 
attractiveness; (b) evaluating model parameters such as glimpse aperture and glimpse duration; 
(c) determining whether the classical or neoclassical search framework provides a better fit to 
overt behavior.  As has been mentioned elsewhere in this report, eye movements during search 
tend toward regions of the scene that are “target like.”  Several metrics have been proposed to 
                                                 

41Though this result is not surprising given the independence of hit rate and false alarm rate in SDT, it is 
interesting that such a result holds in the case of N50 and FDP in that both are ensemble performance measures. 
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determine the attractiveness (or distinctiveness, or conspicuity) of various regions of the scene.  
The evaluation of these metrics is almost always performed by an examination of the degree to 
which eye movements about the scene tended to land on regions that score highly on a metric 
(e.g., Tidhar et al., 1994; Rotman, Kowalski, & George, 1994; Toet, 1996; Cartier, Nicoll, & 
Hsu, 1998).  Also, the evaluation of search models that posit a fixation guidance mechanism 
based on regions of the scene that are likely to contain the target (e.g., Doll et al., 1998) can be 
aided by an evaluation of eye movements.  By examining the spacing of eye movements and 
how that spacing changes as a function of clutter, we can obtain information about the size of a 
glimpse aperture, whether soft- or hard-shell search is occurring, and any effects of clutter on 
glimpse parameters.  Finally, looking at the degree to which fixations return to previously visited 
regions of the scene and when during searching a decision is made can corroborate or disprove 
predictions of the classical and neoclassical search models. 

7.5 Validation Issues 

O’Kane has written an excellent overview of the process of target acquisition model 
development and validation (1995).  The author specifies and gives concrete examples of three 
different methods and the roles they play in the process of model development:  (a) perceptual 
experiments using hybrid imagery, (b) perceptual experiments using calibrated field imagery, 
and (c) field trials controlled and documented as well as possible.  The discussion herein focuses 
on the second of these three steps, as the models considered in this report were arguably past the 
point of using hybrid imagery to test their underlying theories.  At the same time, though, the 
authors (wisely) chose not to put forth the risk and expense required for field trials.  If the field 
imagery is calibrated sufficiently and all relevant observer, task, and dependent variables are 
recorded in detail, then much can be learned about target acquisition without our leaving the 
laboratory.  (Of course, field experiments will be required to validate major models, especially if 
the models predict an effect of a variable, such as observer stress, that cannot be readily 
manipulated in a laboratory setting.) 

As alluded to earlier, evaluation of scene metrics and models of target acquisition performance 
depends on the existence of a standardized data set of images, tasks, observer variables, and 
performance measures.  The generalizability of models is determined by the underlying 
psychophysical data upon which the models are based.  The validation of parts of models such  
as ORACLE or GTV depend on a database of psychophysical results.  Models of vision are 
currently constrained by the lack of a readily available database of stimuli, methods, and 
threshold42.   

A useful data set for target acquisition development and validation must contain four things:  
(a) standardized, calibrated stimuli with complete descriptions of the scene geometry, 

                                                 
42A special interest group at the 1999 Annual Meeting of the Association for Research in Vision and 

Ophthalmology (ARVO) called for the creation of such a database of thresholds and called for its availability on the 
internet. 
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atmospheric conditions, and scene manipulations, (b) information about the task that observers 
must perform, (c) observer variables and how they were measured, and (d) the performance 
measures used and subject performance data. 

Although it is a relatively simple task for basic vision science, since the optical spectrum, the 
unaided eye, and established psychophysical measures are of interest, creating such a database 
for use in military target acquisition research represents a more daunting challenge.  One reason 
for the difficulty (and the need) is that different sensors have different specifications, any of 
which may be important in the determination of observer behavior.  In addition, observer tasks, 
levels of target acquisition desired, and dependent measures (e.g., RT, Pd, FAR, eye movement) 
will differ greatly.  In order for us to grasp observer variables, much data about subject training, 
levels of fatigue, concurrent task load, etc., must also be collected.  The performance measures 
should include ensemble and individual data, preferably with sufficient detail that different 
analyses can be performed on the same data set (e.g., SDT analysis can be performed on data 
from an ensemble-performance study).  Individual data in ensemble studies are of particular 
interest because, as pointed out by Rotman et al. (1989), the reason why ensemble performance 
predictors such as P∞ have the values they do remains unknown. 
 

8. Prognostication:  The Future State-of-the-Art Target Acquisition Model 

This section describes the current state of the art and where modeling is headed.  This final 
section discusses the author’s thinking in terms of the most profitable avenues to be pursued in 
target acquisition modeling. 

There is no clear state-of-the-art target acquisition model.  Some models do a good job of 
predicting performance in general but do not incorporate many factors known to influence 
performance (e.g., ACQUIRE, FLIR92).  Other models incorporate many such factors but have 
so many degrees of freedom that their applicability to a given situation may be questionable 
(e.g., ORACLE, GTV).  Although there is little benefit to having a single model that accounts for 
everything as opposed to several models that each account for a piece of the target acquisition 
pie, there is undoubtedly a benefit to models that take more than a single factor into account. 

The need for a multi-factor approach to target acquisition modeling comes from various lines of 
evidence.  First, studies by Mazz, Kistner, and Pibil (1998), and Meitzler, Kistner et al. (1998) 
demonstrated that the effects of variables such as scene clutter and target velocity, range, and 
contrast had effects on performance independently and as interactions.  Second, many commonly 
studied and validated metrics of clutter and conspicuity are based on the co-occurrency matrix, 
which incorporates structure as well as contrast in determining what parts of a scene are target 
like or are based on measures that take into account more than one scene factor at a time (e.g., 
CAMELEON).  Third, from the perceptual psychology literature, it is known that contrast alone 
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does not determine salience or attentional capture.  Rather, it interacts with factors such as 
motion, transient visual events, and color. 

The trick will be to incorporate the various factors in a way that makes sense and provides a good 
analog to the cues that the human visual system used to perform target acquisition.  Meitzler, 
Kistner, et al. (1998) and Meitzler, Singh, et al. (1998) used a fuzzy logic approach to incorporate 
several factors into the ACQUIRE model.  (Recall that this model is based on the Johnson criteria.)  
The result of the study were sets of fuzzy rules, gleaned from half of a human performance data set 
and applied to the other half, which predicted more than 90% of the variance in performance.  This 
result raises two questions:  Can the rules from one such study can be applied more generally to 
other studies?  Why did the rules arise the way they did?  The first question is a practical matter 
since it applies only to models within the ACQUIRE framework.  The second question is more 
interesting.  What is it about the target acquisition situations in the study that prompted observers 
to use some factors in one case and other factors in another? 

This reviewer is convinced that a theoretically driven research program into how human 
observers use information in the scene will allow general rules to be derived for integrating 
multiple factors in future models.  The starting place for such a program should be an aspect of 
visual perception that is well understood in theory and has been shown to have an impact on 
search and detection.  One possibility would be to investigate the role played by selective 
attention in real-world target acquisition and the observer and scene-based factors that influence 
the deployment of attention.  A team at ARL’s Human Research and Engineering Directorate is 
endeavoring to study attention in just such a way.  With a principled understanding of the role of 
attention and the influences on attention, models may be modified or developed to include 
known effects of measurable factors.   

Current models best able to accommodate the effects of selective attention are models of 
individual rather than ensemble performance.  GTV, in particular, already contains modules to 
prioritize and guide eye movements based on attention and to include training.  Incorporating 
attention into a neoclassical framework model would require a non-random search step that 
dramatically complicates calculations.  Fitting attention into a Johnson criteria-based model also 
presents somewhat of a challenge, since there are so few free parameters to work with.  
(Presumably, N50 or the shape of the TTPF may be modulated by attentional parameters.)   

It is readily acknowledged that regardless of the emphasis placed on multi-factor approaches to 
target acquisition modeling, the Johnson criteria and models based on it will not go away.  It is 
therefore important to determine the extent to which models based on the criteria can be 
extended to include additional factors.  NVESD’s static performance models have undergone 
such scrutiny in an attempt to see if they can accommodate multiple observers, multiple targets, 
clutter, false detection predictions, and the presence of scene obscurants.  Analyses such as the 
one by Silk (1995b, 1997) should be emphasized before we attempt to encompass additional 
variables in such models. 
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Appendix A.  Models and Modeling Concepts of Interest 

This appendix contains descriptions of models that have been influential or discussed in detail in 
the report.  Models are discussed in terms of where they fall on the five classification axes, how 
they function, what they predict, their relations to the topics of interest, and a critique of their 
strengths and weaknesses. 

British Aerospace ORACLE Model (Overington, Brown, & Clare, 1977; Cooke, Stanley, & 
Hinton, 1995) 

 
CAUTIONARY NOTE:  The ORACLE model is proprietary to British Aerospace and (so far as 
this reviewer can determine) has never been published in toto.  The model consists of several 
modules for performing specific visual tasks such as motion, color, depth, etc.  The following 
description is for the general ORACLE framework and its application in search and 
discrimination of achromatic, static, luminance-defined targets. 

Basic operating principles: 
 
 •  Focus is on the known physiology/anatomy of visual system, primarily the optics of 
the eye and the anatomy of the retina. 
 •  The model bases its predictions on retinal image of elements of the scene. 
 •  Assumption:  Edges of a target rather than the total energy within it are significant. 
  •  Threshold detection is therefore based on strength of signal arising from 
luminance gradients across adjacent retinal receptors. 
 •  Signal strength must exceed a noise term for a decision to be made. 
 
Flow of processing: 
 •  Mean scene luminance is used to determine the level of adaptation of the visual 
system. 
 •  Mean scene luminance and field of view determine pupil diameter. 
 •  Pupil size and non-linear optical properties of eye structures determine point spread 
function and modulation transfer function of the eye's optics. 
 •  The point spread function determines how a target image of a particular size and 
luminance contrast (including edge gradient or sharpness) is represented as an image on the 
retina. 
 •  The sum of the activity of photoreceptors around the edge of the target constitutes the 
signal. 
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 •  All of the above processes are based on known anatomical and psychophysical 
properties of the visual system and include such factors as eccentricity, photopic and scotopic 
acuity, the distribution of retinal receptors, vertical/horizontal asymmetries in acuity. 
 
How search is characterized: 
 •  Glimpse duration is constant (1/3 of a second). 
 •  Glimpse locations are independent.  (I.e., random sampling with replacement.) 
 •  Search progresses in soft-shell manner. 
 •  Soft shell characteristics are modeled as a distribution of population (i.e., known) hard 
shell sizes. 
 •  Clutter causes soft shell distribution to lean more towards smaller shells. 
 
How detection is characterized: 
 •  Detection is based on Ricco’s law (i.e., that threshold contrast of a target is 
proportional to its area). 
 
How recognition is characterized: 
 •  Based on ability to resolve detail within the target signature (i.e., detectable changes in 
the perimeter of the target). 
 •  Two adjacent features must be resolvable for discrimination to be possible. 
 
How color is characterized: 
 •  NOTE:  The available documentation on the model did not go into detail although the 
authors do acknowledge that ORACLE’s predictions related to color conspicuity are accurate 
(see below). 
 •  Color in ORACLE is based on R and G cones only, using cone response sensitivity 
data. 
 
ORACLE framework can be used to calculate response to Johnson-like bar patterns by 
determining point spread of constituent Fourier components (odd sinusoids) of the bar pattern’s 
square waveform.  

 •  Four spatial scales (analogous to responses from sets of single, 3, 9, and 27 adjacent 
photoreceptors) are incorporated into the model in order to accommodate psychophysical results 
related to the overall contrast sensitivity function of the eye. 
 
NOTES: 
 •  Motion not included in model. 
 •  Model has not been validated in general – only piecewise agreement with 
psychophysics. 
  •  There is no sufficient database with which to validate the model (authors). 
 •  More interested in optics of the eye than other models. 
 Targets are assumed to be larger than 9 arc min in diameter. 
 •  The model assumes that edges are important, yet it is able to model Ricco’s Law for 
small targets.  This is only possible for targets that are not elongated; otherwis,e the edge-based 
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signal might be stronger than the area-based signal.  Possibly small targets are blurred so that this 
is not a problem? 
 •  ORACLE's visibility (target SNR) was compared to human ratings of conspicuity of 
colored targets against colored backgrounds (Johnson, 1990).  The model agreed well with 
human data.  However, no specifics were given as to how color was included in the model tested. 
 
CRITIQUE: 
 •  Model suffers from lack of fixation guidance mechanism.  Effects of clutter only alter 
attributes of soft shell lobe. 
 •  ** Top-down characteristics are not implemented into model because they govern how 
search will progress through a particular scene.  The authors argue that “…the effort in modeling 
at an equivalent level of detail is far greater than the reward for many practical situations.”  As a 
result, they select lobe sizes that will produce experimentally measured cumulative search 
distributions over time. 
 •  Models such as this one are likely less accurate since stimuli upon which they operate 
approach the limits of any psychophysical measurements upon which the model is based.  
Overington (1982) pointed out that that models based on psychophysics have specific “envelopes 
of usage” where their predictions are accurate.  Outside such envelopes, error propagates from 
step to step in calculation, resulting in degradation in overall performance. 
 •  Looming targets (targets that approach the observer along their line of sight) are 
modeled as an increase in size and apparent contrast only.  Such a characterization is inadequate 
to model the phenomenon of looming. 
 •  Perceptual learning not included in model, so performance cannot improve with 
practice. 
  •  It is unclear how practice effects could be included since the model’s 
psychophysical basis does not include data for trained versus untrained observers. 
 
 



 

94 

Georgia Tech Vision (GTV/VISEO) Model (Doll, McWhorter, Schmieder, & Wasilewski, 
1995; Doll, McWhorter, Wasilewski, & Schmieder, 1998) 

 
GTV is the general purpose vision model produced by Georgia Tech.  The military target 
acquisition model VISEO (Doll et al., 1997) incorporates GTV into a number of processing 
modules. 
 
Basic operating principles: 
 •  Focus is on psychophysics and multi-channel SF modeling. 
 •  Decisions are based on the object-by-object point probability of being fixated and that 
a fixated object will be judged a target. 
 •  SNR and clutter are incorporated. 
 •  Conspicuities of objects in the scene determine the probability that they will be fixated. 
  •  Clutter and training are involved in determining these. 
 •  Pre-attentive scene segregation into “blobs” (i.e., target-like regions) is based on 
texture segmentation. 
 •  GTV models visual system as output of many (56) oriented spatial frequency-selective 
channels, the output of which undergoes various operations.  The goal of the model is to 
intelligently combine information from channel output of early vision so that targets can be 
distinguished from clutter.   
  •  GTV includes a simulation of optics of the eye as well as retinal and cortical 
V1, V4 (color), and MT (motion) visual processing area. 
 •  GTV consists of a pre-processor that takes a scene or display and converts it into a map 
of one rod plus three cone output, followed by five processing stages:  a “front end,” pre-
attentive and attentive modules that run in parallel, a selective attention/training module, and a 
performance module. 
 
Each stage, in more detail: 
Stage 1 – Front End 
 •  Luminance:  concerns receptor pigment bleaching, pupil dilation, receptor thresholds/ 
bleaching, flicker, and transient luminance changes 
 •  Color: converts the pre-processed image from short, medium, long wavelength 
receptor activity to R/G and B/Y color opponent pairs and cone luminance signal 
 •   output to pre-attention and attention stages in parallel 
 
Stage 2 – Pre-attention module (search information) 
 •  Performs calculations of conspicuity for peripheral vision. 
 •  Motion:  temporal filtering extracts local motion signals; temporal integration adds blur 
to high spatial frequencies of the image 
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  •  Filtered separately from spatial information, similarly to human V4/MT 
processing (Livingstone & Hubel, 1987) 
  •  Motion processing based only on scotopic (rod) and mean photopic (cone 
luminance) information, not chromatic information. 
 •  Pattern perception unit in module decomposes image into oriented SF channels 
  •  Number of channels depends on source (though always four orientations):  two 
from rods, 12 from each color opponency, 24 from cone luminance. 
  •  Interactions between rectified, filtered channels are simulated. 
 •  Texture information extracted. 
 •   output to selective attention module 
 
Stage 3 – Attentional module (detection discrimination information) 
 •  Performs similar calculations to stage 2, only now for foveal feature extraction, i.e., 
different acuities, color and motion sensitivities, etc. 
 •   output to selective attention module 
 
Stage 4 – Selective attention module (assignment of Pfix, Pyes|fix; training) 
 •  Uses weighted pre-attentive output to segment scene into objects. 
 •  Uses neural network to set weights.  Weights for discriminant function attempt to 
distinguish between target and background pixels.  The neural network uses training to set up 
this discriminant function. 
 •  output of pre-attentional operations is a set of blobs representing potential targets.  
Uses weighted attentive output to segment foveal scene into objects. 
 •   output of same processes as on pre-attentive information (only now using filters 
tuned for the fovea) is a map containing target-like foveal objects. 
 •   output to Performance Module 
 •  NOTE: The neural network that sets the weights of pre-attentive and attentive 
representation features that are to be stressed must be trained before GTV is run.   
 
Stage 5 – Performance module 
 •  Performance module computes measures of search and discrimination performance 
based on output of selective attention module: 
 •  Calculation of Pd, P(FA), d', and RT: 
  •  The model simulates an observer selecting fixation locations by means of a 
noisy decision process-based conspicuity.  Conspicuity is a function of the pre-attentional Pfix 
calculation, noise, clutter, and the spacing of objects: 
   •  quantum noise, neural noise, and clutter (defined as “extent to which a 
clutter blob’s luminance, texture, chromatic information, and temporal contrast match the 
target”) 
   •  Spacing of target blob with respect to clutter blobs also influences 
conspicuity (consistent with Duncan & Humphreys, 1989). 
  •  At each location, the signal-to-clutter ratio is calculated: 
   •  The fixated object signal is based on the pooled attentive output 
summed over the blob area. 
   •  The SCR is = (signal – average clutter blob signal)/standard deviation of 
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clutter blob signals 
  •  Appealing to signal detection theory, the SCR is equated to d'.  Thus, Pyes|fix and 
P(FA) can be calculated once a decision criterion has been assumed or measured.  Pd = Pfix x 
Pyes|fix 

  •  Once Pyes|fix is known, the model can determine how many glimpses are 
required before a decision is rendered.  (The model assumes that fixations are selected from high 
Pfix locations without replacement.)  Given a constant glimpse duration, RT can be calculated. 
 
Model predictions: 
 •  Probability that a “blob” is fixated on glimpse i: Pfix(i) 
 •  Probability that a blob, once fixated, is determined to be a target: Pyes|fix(i) 
 •  Pd (given a criterion for decision making according to SNR) 
 •  RT, based on number of glimpses required to make judgment. 
 
NOTES: 
 •  Motion contributes to conspicuity and causes blur before SF analysis. 
 •  Masking (interactions between SF channels) is implemented in the model. 
  •  Channels are therefore not independent (see Olzak & Thomas, 1992, for a 
discussion of such models) 
 •  Glimpse duration assumed to be a constant 1/3 second.  That is, all glimpses during 
search are exactly 333 ms. 
 •  Motion can but does not necessarily increase the conspicuity of a moving object.   
 
CRITIQUE: 
 •  The calculation of all foveal features (by attention module) at the same time is not 
physiologically realistic.  The model would be more realistic and behave identically if it were to 
calculate the foveal features only after a blob has been selected by the performance module.  
(This behavior takes into account the unbound feature nature of pre-attentive and post-attentive 
vision by Wolfe & Bennett, 1997.) 
 •  Incorporation of pre-attentive stage to drive eye movements is a good idea. 
 •  Training at both pre- and attentive levels is also a good idea. 
 •  Eye movement assumptions (i.e., selection without replacement) are unrealistic (e.g., 
Horowitz & Wolfe, 1998; Nicoll & Hsu, 1995). 
 •  Although the model can in theory handle target-absent trials (i.e., no response is made 
if every pre-attentive blob is investigated and none has sufficient signal strength to trigger a 
“yes” response), it can only do so if serial self-terminating search processes are assumed.  Such 
an assumption, that after each potential target is investigated once only an absent judgment is 
made, does not appear to be the case (Chun & Wolfe, 1996).  Observers tend to over-search and 
are hesitant to report the absence of a target. 
 •  Attention can only refer to the presence of features, not their absence.  As such, a less 
green object among more green objects should be quite inconspicuous, though in reality it may 
be quite conspicuous (although the search asymmetry literature indicates that it would not be as 
conspicuous as the obverse e.g., Wolfe, 1994b]). 
 •  Training issues: 
  •  Training’s effect is entirely based on automaticity (Schneider, Dumais, & 
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Shiffrin, 1984).  That is, with training, any combination of features can cause an increase in 
conspicuity.  In reality, some conjunctions of features cannot be learned by humans (such as 
orientation-color combinations).  This lack of constraint on what can be learned manifests itself 
as the model’s out-performance of humans and the need to add noise to make it behave more like 
a human observer (Doll et al., 1998). 
  •  It is unclear to what degree the training is generalizable to slightly different 
targets or to what degree more than a single target can be trained at a time (as are many neural 
net-based representations).  These possibilities were addressed in neither paper. 
 •  Problem with motion implementation: 
  •  Because motion information is scalar (only related to speed, not direction), the 
model’s attention mechanism has no direction selectivity, which the human visual system does.   
  •  Therefore, GTV can only distinguish between speeds.  This does not allow the 
system to extract information about motion parallax and how a moving target’s violation of 
parallax is plainly visible. 
 •  Foveation is required for detection!  Even though the model is ostensibly based on the 
conspicuity of targets, highly conspicuous targets must still be fixated for the model to produce a 
“yes” response.  This result is inconsistent with pop-out (e.g., Yantis & Egeth, 1999). 
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Itti and Koch (2000) Saliency-Based Attention and Fixation Selection Model  
 
 
 
 
 
 
 
 
The Itti and Koch (2000) model is purely bottom-up in nature, though it was modified with 
limited success by Turano et al. (2003) to incorporate crude representations of target features and 
target location.  The model is based heavily on known aspects of human, primate, and 
mammalian (feline, primarily) visual psychphysics, neuroanatomy, and electrophysiology.  The 
model encodes the visual scene along three feature dimensions (luminance intensity, orientation, 
and opponent-pair color contrast) at multiple scales.  Activation within each feature dimension is 
used to create a conspicuity map for that feature.  These three conspicuity maps are then 
combined into a single saliency map.  The model defines the next fixation location as that 
corresponding to the point of maximum activation in the saliency map.  Inhibition of return is 
invoked as a temporary inhibition of this location in the saliency map to prevent immediate re-
fixation of the same location in the scene. 

 
CRITIQUE: 
 •   The model does not incorporate transient visual events (flashed, motion, etc.) into 
its calculation of saliency, even though those events have been demonstrated to capture visual 
attention (e.g., Yantis, 1996). 
 •   The model’s performance for simple stimuli such as oriented and colored line 
segments is a good match for human performance.  However, though the model’s behavior in 
real-world scenes seems subjectively to be reasonable and actually located targets far faster than 
would a random fixation generator, results from Itti and Koch (2000) indicate that it does a poor 
job of predicting the response times for human observers to detect targets.  Further results from 
Turano et al. (2003), though coded differently for fixation location, indicate that the Itti and 
Koch (2000) model performed at chance levels during a real-world mobility task. 
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Guided Search (Wolfe, Cave, & Franzel, 1989; Wolfe, 1994b; Wolfe & Gancarz, 1996) 

 
Wolfe and colleagues’ Guided Search models integrate stimulus-driven (bottom-up) and goal-
directed (top-down) mechanisms in the deployment of attention (and eye movements in Wolfe & 
Gancarz, 1996) about a scene.  That is, the models all incorporate observer knowledge of target 
attributes and guide attention to objects in the scene that have those attributes.  (Note that these 
models are based on simple objects such as oriented, colored line segments with simple, 
separable features.  They were not intended to be applied in their present form to real-world 
target acquisition situations.  Wolfe [1994a] did, however, apply the guided search framework to 
“naturalistic” stimuli with some success.)   

 
Pre-attentive system attributes 
 •  Operates in parallel across visual scene. 
 •  Creates a map of features present at various locations in the scene 
  •  Features: orientation, size, color, luminance, motion, depth 
  •  One spatial map per feature, with activation level indicating feature presence. 
  •  Activation level a function of feature and both difference within feature 
dimension from neighbors (dissimilar neighbors  higher activation than similar neighbors) and 
distance between items (close  higher activation than far).  Therefore, pre-attentive system 
calculates feature loadings of items and also distinctness of items. 
   •  (This incorporates findings of Duncan & Humphreys, 1989, and 
Nothdurft, 1991.) 
 •  Noise is added to feature map locations. 
 
Attentional system attributes 
 •  Top-down feature maps contain information about features present in the target.   
 •  Features that are unique are given highest weight. 
 
Combination of bottom-up and top-down activations: 
 •  A master activation map is created.  High activations result from locations that weigh 
heavily on several feature maps from top-down and bottom-up processing. 
 
Search and detection: 
 •  Search progresses in order from highest activation location to lowest. 
 •  IOR is implemented so that once a location is searched, it is not searched again.  (This 
is an unrealistic assumption.  See Nicoll & Hsu, 1994, for data contradicting this.) 
 •  Search progresses until (1) a target is found, (2) a specific period of time has passes 
without finding a target, or (3) activations are judged by the observer to be too low to be targets. 
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  •  Target detection is based on SDT:  If activation of bottom-up maps is greater 
than a decision criterion, a detection is rendered. 
 •   Situation (1) is a hit or a false alarm; (2) or (3) may create misses or correct 
rejections. 
  •  False alarms are a result of the decision criterion being shifted downward after 
a miss (assuming subjects are given feedback).  False alarms, in turn, shift the criterion upward. 
 
CRITIQUE: 
 •   Model makes specific, testable predictions about search performance in simple 
tasks. 
 •  Guided Search is useful in that it assumes (probably correctly) that covert shifts of 
attention (i.e., attentional movement without subsequent eye movement) and eye movements are 
determined in large part by a parallel pre-attentional system. 
 •  Features are weighed so that search asymmetry results, pop-out, and top-down 
attentional control settings are accounted for. 
 •  Incorporation of several results from search literature (e.g., pop-out for feature 
singletons, similarity and proximity effects). 
 •  The assumption of serial self-terminating search is almost certainly incorrect. 
 •  The generation of errors in the model is problematic and seems almost atheoretical. 
  •  Inclusion of the mechanism to generate errors does create a reasonable looking 
speed-accuracy trade-off. 
 •  Cannot be extended to situations in which features are not clearly delineated. 
 •  Does not work for continuous, naturalistic stimuli such as textures. 
 •  Does not have a mechanism to perform a difficult detection or any kind of 
discrimination task. 
 •  Inclusion of IOR is interesting, though it is unclear what role IOR actually plays in 
search.  See section of report on assumptions of neoclassical search framework.  Memoryless 
search does not permit IOR to occur. 
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Human Spatial Vision Model (Wilson, 1991)  Filters for spatial vision 
 
The filters that determine spatial vision: 
 
Mechanism Basis 

Frequency 
Number of 
Orientations 

Weighted 
Locations 

Number of 
filters 

Filter Contrast 
Sensitivity 

A 0.9 cpd 6 6 36 30.0 
B 1.7 cpd 7 36 252 70.0 
C 2.8 cpd 8 49 392 140 
D 4.0 cpd 9 100 900 150 
E 8.0 cpd 11 256 2816 76.7 
F 16 cpd 12 961 10,532 18.4 
Total number of filters:  15,928 
cpd = cycles per degree 
 



 

102 

Johnson's (1958) bar pattern equivalence study and the Johnson Criteria 

 
Basics: 
 •  Static performance model 
 •  Stationary targets 
 •  Achromatic 
 •  Uniform background 
 
Johnson attempted to establish a relationship between the number of lines resolvable on a target 
through an imaging device and the degree to which that target could be acquired.  Subjects 
viewed scale models of eight vehicles and a Soldier through an I2 device and were asked to 
(1) detect, (2) determine the orientation of, (3) recognize, or (4) identify the target.  (The level of 
discrimination in task (2) is referred to as classification.) 

Bar charts of the same contrast and scale as the target models were also displayed to subjects.  At 
each scale and contrast, Johnson desired to know how many cycles were resolvable.  The 
maximum number of resolvable bar cycles across the target’s critical dimension was determined 
for each task: 

xtarg f  H  N ⋅=  
in which N = number of cycles resolvable across target critical dimension, 
  Htarg = critical dimension of the target, 
  fx = highest bar pattern spatial frequency (fundamental frequency of bar). 
 
Johnson found that so long as the contrasts of the bar (light versus dark bands) and target (target 
versus background) were equal, the number of cycles on target was found to be independent of 
both target contrast and scene luminance.  In other words, the ability of an observer to perform a 
discrimination task was related solely to their ability to resolve bar patterns.  The following table 
lists the average number of cycles required for an ensemble of observers to acquire various 
military targets with 50% accuracy, defined as Pd = P(detect | present):  

 
Resolution across critical dimension to perform 50% accurate acquisition at a level of: 

Detection Orientation (classification) Recognition Identification 
1.0±0.25 1.4±0.35 4.0±0.8 6.4±1.5 

 
This number of cycles for 50% accurate ensemble performance is referred to as N50.   
 
The shape of the psychometric function relating ensemble accuracy, Pd, to the number of 
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resolvable cycles on target, N, is known as the target transform probability function (TTPF), and 
has been empirically determined to be: 

E

E

d NN
NNP

)50/(1
)50/(

+
=  

in which 
  )50/(7.07.2 NNE +=  
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NVESD models: ACQUIRE (Tomkinson, 1990) and FLIR92 (Scott & D'Angostino, 1992) 

 
FLIR92 is based on the Bailey (1970) framework of separable detection and discrimination 
stages in search.  ACQUIRE represents the non-time-dependent discrimination stage of FLIR92 
and does not incorporate search.  Both models use the Johnson (1958) bar pattern equivalence 
metric for target discriminability using electro-optical devices.  ACQUIRE in particular is 
designed to predict the range at which a known target can be acquired by an ensemble of 
observers.   

Pure detection in ACQUIRE proceeds as follows: 

 1.  The area of a rectangle with the same width and height as the target is calculated.  Call 
it A. 

 2.  The mean temperature difference between the target and its immediate background, Δ
T, is calculated. 

 3.  The number of resolvable cycles on the target, N, is calculated as 

rf
R
AN ×=  

in which R = the target range, 

  fr = the maximum spatial frequency resolvable from the minimum resolvable 
temperature difference (MRTD) curve defined for the sensor and atmosphere 

 4.  The ensemble probability of acquisition is then calculated as : 

E

E

d NN
NNP

)50/(1
)50/(

+
=  

in which )50/(7.07.2 NNE +=  

  N50 = number of cycles resolvable for 50% ensemble acquisition at the desired 
level of acquisition (i.e., detection, recognition, identification) 

 
NOTES: 
 •  ACQUIRE is sensitive to clutter in that N50 increases as level of clutter increases 
 •  ACQUIRE is not able to handle motion effectively, though attempts to do so are under 
way (e.g., Mazz, Kistner, & Pibil, 1998) 

optical/objective 
reductive 

target-centered 
physiological 

individual 

cognitive/subjective 
comprehensive 
situation-centered 
empirical 
ensemble 



 

105 

FLIR92 adds a front end search process before the ACQUIRE discrimination stage.  As 
mentioned before, the model takes advantage of the following assumptions: 
 
 •  Glimpse duration is constant (at around 0.3 second). 
 •  Glimpse location is random with replacement. 
 •  Each glimpse has an equal probability of locating the target. 
 •  Asymptotic performance (given infinite time) will not be perfect; rather, it will 
converge on the predictions of ACQUIRE. 
 
The model uses these assumptions to achieve the following performance prediction as a function 
of time: 

)1()( / FOVt
dd ePtP τ−∞ −=  

in which ∞
dP = Pd, above (asymptotic performance given an infinite search time) 

  τFOV = the mean time to detect the target (equals average glimpse time divided by 
the probability of locating the target in a single glimpse) 
 
…the average target detection rate, 1/τFOV, is related to target detail available and required for 
acquisition within a field-of-view search: 

508.6
11

N
N

FOV

=
τ
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Recognition by Components (RBC) Theory (Biederman, 1987)  
 

 
The basic idea behind RBC theory is that through the extraction of so-called “non-accidental” 
properties of a 2-D retinal image, a 3-D representation of the object can be formed.  The 
representation consists of a selection of basic geometric forms called “geons.”  The 
representation of the object is then compared to internal representations of known objects.  
Recognition occurs when the geon representations match.  The internal representations, 
according to the model, are scale and viewpoint invariant in that, so long as an object can be 
broken into sufficient geons in a well-defined spatial relationship with one another to produce a 
representation matching an internal representation, the location in space, size, and viewing angle 
of the object are unimportant. 

The primary non-accidental properties of an image are based on regions of deep concavity, 
which correspond highly with Marr and Hildreth’s (1980) concept of zero crossings in a 
difference-of-Gaussian-processed image.  (In a neural network model instantiating RBC theory, 
Hummel & Biederman, 1992, used a DOG or DOOG (difference of offset Gaussians) operator to 
extract edges at an early stage of processing.)  The edges, however extracted, hint at 3-D surface 
characteristics by means of Gestalt-like principles such as grouping, symmetry, and similarity, 
and by the interpretation of T- and L-junctions.  These principles and properties are used to 
generate inferences about the underlying geon structure of the object that precipitated the retinal 
image.  A key feature of the theory is the idea that not all parts of an edge drawing of an object 
are necessary for the extraction of the object’s shape.  Rather, it is the “cusps” or junctions that 
are crucial.   

 
Theoretical problems with the model: 
 •  The notion of invariance has not withstood uniformly empirical examination (e.g., 
Hayward & Tarr, 1997), indicating that the internal representation of objects may not be as 
simple as RBC holds. 
 •  Surface characteristics may have an effect on extraction of a geon-based representation 
of objects (Hayward & Tarr, 1997). 
 •  Tarr and Bulthoff (1995) argue that a geon-based structural description is inadequate 
for the recognition of category-level objects. 
  •  (However, good agreement with field testing of sub-category object recognition 
and the errors made in such recognition seems to lend support to the generalizability of some 
aspects of RBC theory [O'Kane, Biederman, Cooper, & Nystrom, 1997].) 
 •  As the aspect ratios of geons is not hypothesized in RBC theory to be included in the 
internal representation of objects, some discriminations cannot be performed.  For example, the 

optical/objective 
reductive 

target-centered 
physiological 

individual 

cognitive/subjective 
comprehensive 
situation-centered 
empirical 
ensemble 



 

107 

only distinction between a Boeing 747-400 and a 747-ST is that the latter is shorter.  Both 
objects are composed of the same components, however, so that RBC-based recognition cannot 
distinguish between them. 
 
Modeling target acquisition with RBC theory: 
 •  Since RBC relies on the extraction of object primitives that are based on a line drawing 
of the object in 2-D space, models that use a DOG or DOOG operation to extract edges from an 
image may be particularly suitable.  Such an edge extraction technique would have to have some 
way of eliminating the edge artifacts of surrounding clutter and shadows. 
 •  The fact that RBC ignores surface characteristics such as texture and color indicates 
that during certain circumstances, it may be inapplicable. 
 •  A key difficulty for RBC theory as a general purpose object recognition explanation is 
the fact that it can distinguish only between basic categories of objects, such as tanks and jeeps.  
Because geons do not have extent, internal object representations may not be able to distinguish 
between members of the category, that is, identification discrimination. 
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Rand/Bailey's (1970) classical model of search 

 
Primary contributions of Bailey models: 
 •  Target acquisition is considered to consist of three distinct steps:  time-dependent 
search, time-independent detection, and time-independent discrimination.  Each step is 
considered independent of the others, although all depend on the same information in the scene 
(obviously), and each subsequent step presupposes that the previous step has occurred.  The 
information is treated separately, though. 
 •  The independence assumption allows the probability of discrimination to be the 
product of the probabilities of each stage succeeding: 
 

P = P1 x P2 x P3 

in which P1 = probability of locating target in a single glimpse, 
  P2 = probability of detecting a located target, 
  P3 = probability of discriminating a detected target 
 
  •  P1 is a hard-shell search with a fixed glimpse aperture Ag. 
  •  P2 is contrast-based, assumes SNR >> 1, based on observed target size and 
contrast, though contrast for targets specifically modeled (ground targets as seen from the air) are 
rarely of absolute contrast >1.   
  •  P3 is based loosely on the Johnson criteria in that it is based on the number of 
resolvable “cells” across the smallest target dimension.  The model attempts to fit the asymptotic 
probability of discrimination to the number of cycles (i.e., the TTPF) with an inverse exponential 
cut-off at 0 probability of discrimination when cycles < 2. 
 
Particulars 
 •  Validated against Blackwell data. 
 •  Not a near-threshold model.  Targets were detected, based on contrast rather than SNR. 
 •  Location stage is a non-guided, deliberate search. 
 •  Detection stage is dependent on unconscious visual detection of contrast. 
 •  Discrimination stage is conscious, effortful process. 
 •  Glimpse rate and duration are constant (0.3 second). 
 •  Eye movements not selected at random or completely systematically: 
  •  Distance of search saccade should be affected by Ag, the effective glimpse 
aperture over which foveal search can occur.  Ag is influenced by size of known target with 
respect to FOV size. 
  •  Bailey models probability of glimpse landing on target as function of glimpses 
(or time) as 1 minus an inverse exponential, that is, as the distribution of first arrival times of a 
Poisson process. 
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 •  Given sufficient time, the search portion of the model will eventually fall on target. 
 
How clutter is handled: 
 •  Clutter is modeled as a scene congestion parameter, G, which varies from 1 to 10 and 
indicates the density of target-like scene elements.  G’s primary influence in P1 is to reduce the 
size of the glimpse aperture.  That is, more clutter causes smaller glimpses and shorter saccades 
(which is, in fact, the case). 
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in which  aT = target size, 
  As = search area, 
  G = scene congestion {1..10}, and 
  t = search time 
 
 •  Clutter only plays a role in location, not detection or discrimination. 
 
CRITIQUE: 
 •  No guidance of search process aside from knowledge of target size that drives saccade 
size (Ag). 
 •  Search process cannot terminate on “target not found” decision. 
 •  Contrast modeling for required detection in P2 may be too specific for general use. 
 
 



 

110 

VIDEM (Akerman & Kinzly, 1979)  
 

 
Particulars: 
 •  validated by Blackwell data (in terms of contrast threshold) 
 •  Search type: soft shell 
 •  Background: cluttered 
 •  Targets 
  •  stationary, single targets, non-chromatic, equivalence to circles of a certain 
diameter 
 •  Search location selection: random 
 •  Bailey (1970) search framework 
 
Detection stage: 
 •  target contrast is modeled to be that of a disk of diameter equivalent to the target’s 
critical dimension 
 •  driven by contrast threshold 
  •  contrast threshold is a function of target size (equivalent disk diameter) and 
retinal eccentricity: 

CT = 0.0352θ0.24 + 0.584θ1.6/α2 
Discrimination stage: 
 •  driven primarily by clutter (see below) 
 
Clutter inclusion: 
 •  clutter increases glimpse duration, decreases distance of search saccades, increases eye 
response time, and increases contrast threshold 
 •  clutter is assumed to be a GLOBAL metric 
  •  Mean scene clutter, M-bar, is calculated by Waldman, et al.’s (1988) gray-level 
co-occurrency metric, which bases clutter on similarity of background and target structure. 
  •  Target must be known in order to calculate M-bar 
 •  instantiated in similar manner to Greening's (1976) MARSAM model: 

P3 = [1 + M/29tg
0.93]-1.29 

in which M = number of confusable objects (from Waldman, et al., 1988), 
  tg = average glimpse time 
 
 •  effect on tg: 

tg = (0.5782 + M)θs
-0.2132 

in which θs is circular search field size (equivalent to saccade distance) 
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 •  effect on saccade distance: 
θs = 0.152tg

-3.127 
 
 •  effect on contrast threshold (instantiated as a multiplier to contrast threshold): 

FH = exp(-5.46M2.37) 
 
CRITIQUE: 
VIDEM does a good job of representing the effects that clutter is known to have on search.  
However, the numerous effects of clutter (and the number of parameters that must be fit to a 
validation data set) yield a model where it may be difficult to weigh the effects on a single 
process.  Also, treating targets as equivalent disks will be problematic for targets that are known 
to have a high degree of anisotropy, a length-to-width ratio vastly different from 1:1.  VOM 
attempts to address these two shortcomings. 

 
Also: 
 •  Random saccade locations are unrealistic, given that Waldman’s clutter metric has 
been used by itself to predict fixations in a cluttered scene.  That is to say, the co-occurrence 
metric used to calculate a local clutter metric yields regions of the scene that are highly similar to 
a target.  As such, attentional guidance to regions of similarity to the known target (recall that the 
target must be known in detail to calculate M) will cause saccades to known target locations. 
  •  The fact that VIDEM uses only a global clutter metric is the basis for their 
assumption of random saccade location selection. 
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Visual Observer Model (VOM) – Akerman (1992, 1993b)  
 

 
Particulars: 
 •  An extension of the VIDEM model (Akerman & Kinzly, 1979) 
 •  Excludes some effects of clutter 
 •  Targets may be represented differently: by a function of their “useful Area, Au” (rather 
than an equivalent disk area) equal to a portion of the area projected inward from the perimeter 
of the target 
 
Detection stage: 
 •  Contrast threshold can now be calculated by the VOM criteria (excluding the clutter 
multiplier, FH) or by Nachman (1953) criteria: 
 

CT = K1pk2/Au 

in which K1 and K2 are constants, empirically derived, based on the adaptation luminance, 
  p = target perimeter, and 
  Au = useful area measured inwards from perimeter (in angular distance). 
 
Differences from VIDEM: 
 •  Clutter is not assumed to have an effect on contrast threshold in search stage. 
 •  The notion of the eye's response time (an additive factor to glimpse duration that 
depends on clutter) is eliminated. 
 
CRITIQUE: 
The same criticisms based on saccade location selection still hold for VOM as they did for 
VIDEM. 

The modification of target “size” to include useful area is potentially quite useful.  The useful 
area notion introduces more observer-based knowledge to the target acquisition situation since 
the area of a target that is deemed “useful” will depend on its structure, which the observer is 
also presumably looking for.  Given that the gray-level co-occurrency matrix upon which the 
clutter metric is based concerns target and background structure, it may be argued that a 
detection stage that keys onto useful area is also incorporating some knowledge of structure and 
thus may give better agreement with the clutter metric.  Eye movements may therefore be better 
accounted for, albeit not directly. 
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Appendix B.  Proposed Metrics for Motion, Clutter, Conspicuity, and 
Distinctness 

This appendix contains details of the various metrics discussed throughout the review. 

Number of confusing forms clutter metric (M) – Ryll (1962) 
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in which M = number of confusable forms visible within a glimpse and 
  t = glimpse duration. 
 
NOTES: 
 •  Global metric. 
 •  Only affects recognition. 
 •  Used in VIDEM and VOM models with M calculated by means of Waldman’s co-
occurrence clutter metric, CN. 
 
Scene congestion (G) metric (Bailey, 1970) 
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in which aT = target size, 
  As = search area, 
  G = scene congestion factor {1..10}, and 
  t = search time. 
 
NOTES: 
 •  Clutter is modeled as a scene congestion parameter, G, which varies from 1 to 10 and 
indicates the density of target-like scene elements.  G’s primary influence in P1 is to reduce the 
size of the glimpse aperture.  That is, more clutter causes smaller glimpses and shorter saccades 
(which is actually the case [e.g., Akerman, 1992]).   
 •  Clutter only plays a role in location, not detection or discrimination. 
 •  Global metric. 
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Target conspicuity (Kp) (Williams, 1966) 
 

dp AtKePd /1 −−=  

in which Kp = target conspicuity,  
  t = search time, and 
  Ad = display area. 
 
NOTES: 
 •  First mention of how conspicuity can be instantiated into a model. 
 •  Author realized that of the many possible factors incorporated in conspicuity, only 
luminance contrast was well defined (at the time). 
 •  Clutter affects detection probability (P1) only. 
 •  Kp empirically determined. 
 
Simple First Order scene metrics (Pratt, 1991, for overview) 
 
 •  Absolute average intensity difference:        || BT μμ −  
 •  RMS intensity and target variance difference:       22)( TBT σμμ +−  
 •  Adjusted RMS intensity and target variance difference:      22 4)( TBT σμμ +−  
 •  Absolute mean intensity difference plus absolute standard deviation  |||| BTBT σσμμ −+−  
     difference: 
 •  Absolute mean intensity difference plus target standard deviation:     TBT σμμ +− ||  
 •  The Doyle metric (Copeland, Trivedi, & McNamey, 1996):     22 )()( BTBT σσμμ −+−  
 •  The Doylemod metric (Copeland, et al., 1996):     22 )()( BTBT k σσμμ −+−  
 •  The nrms metric (Kosnik, 1995):        

BT

BT

+

+

μ
σ  

 
NOTE:  μT = mean of gray-level distribution over the target area 
   μB = mean of gray-level distribution over background support (typically area 
immediately around target area) 

   σT = standard deviation of gray-level distribution over target area 

   σB = standard deviation of gray-level distribution over background support 

   k = modulation factor for variance difference 
 
NOTES: 
 •  First order metrics or any combination of them lack structural information about the 
target or background support and thus cannot be used for feature extraction. 
 •  A more complex class of first order metrics is based on normalized histograms, described 
next. 
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The gray-level co-occurrency matrix 
 
This matrix represents, within an area of a pixilated image, the frequency of one gray level 
occurring in a specified linear spatial relationship with another gray level.  The co-occurrency 
matrix, PΔ(i,j), is a GxG dimension matrix in which G is the number of gray scale levels in the 
image.  It is defined by 

∑
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in which (xk, xk+Δ) = a pair of pixels with gray levels i and j, 
  i and j = gray-level values from 0 to a maximum, G, separated by 
   Δ = a displacement vector which is a function of the distance, s, between 
the pixels and the angle θ between them. 
  f = {1 if xk=i and xk+Δ=j, or 0 otherwise} 
  N = number of pixels in the area of the image. 
 
 
Normalized Clutter metric (CN) (Waldman, Wooton, Hobson, & Luetkemeyer, 1988) 
 
(Note: the gray-level co-occurrency matrix PΔ(i,j) is detailed in the text.) 
 
To Calculate: 
 •  The amount of clutter C is calculated as the mean of the product of the relative texture 
size and the distance-weighted transition probability (i.e., the probability of transitions between 
gray levels in the co-occurrence matrix): 

)(Δ= B
T
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in which s = average texture element size, 
  T = average target size,  
  Δ = polar displacement (see text), and 
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 •  The normalized clutter is defined as either C/BE or 1, whichever is smaller. 
  •  BE is the expected value of B. 
 
 
NOTES: 
 •  works for uniform textures only 
 •  Has overly-simplistic mathematical properties: 
  •  It is symmetric with respect to target size and background texture size; ignores 
search asymmetry literature. 
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Texture-based clutter (TIC) metric (Shirvaikar & Trivedi, 1992) 
 
To Calculate: 
 •  This metric is also based on the gray-level co-occurrence matrix.  It is similar to 
normalized clutter, except that it puts quadratic instead of linear weight on differences in gray 
level. 
 •  First, calculate the “inertia” of the co-occurrence matrix, ΔI: 
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 •  We calculate the global TIC by dividing the inertia by the target size, Δ: 

Δ
Δ

=
)(ITIC  

NOTES: 
 •  global metric 
 •  depends on target size 
 •  Performs marginally better than SV. 
 •  The authors recognize that the metric alone, because it fails to capture internal target 
structure, may not capture perceptually meaningful information and should be used in addition to 
such measures (Shirvaikar & Trivedi, 1992). 
 
 
Average Co-occurrence Error (ACE) metric (Copeland & Trivedi, 1996, 1998) 
 
To Calculate: 
 •  Define a target and background region 
 •  Define the “texture model” as the number of pixels away from each other; two pixels 
within each region are then compared (typically eight pixels are considered) 
 •  ACE is the absolute difference between corresponding elements of target and 
background co-occurrence matrices, summed over all possible displacement vectors of the length 
specified within the texture model (see Copeland & Trivedi, 1996, for more details): 
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in which ΘNGLC = total number of displacement vectors in the set Φ of vectors in the texture 
model 
  G = number of gray scale levels 
 
  )|,( ΔjiPT  = joint probability of a pixel of gray level i and gray level j given the 
displacement vector Δ for the target pattern 
  )|,( ΔjiPB  = corresponding joint probability for the background pattern 
 
 •  The total of displacement vectors of separation eight pixels is 144 displacements.   
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 •  To simplify calculation, the number of gray levels is typically reduced to eight, since 
computation becomes very laborious with 144 256x246 matrix operations to calculate the ACE. 
 
NOTES: 
 •  Authors used this metric to predict human judgments of texture differences. 
 •  Metric outperformed both Doyle metric and a model based on boundary strength 
(Muller, 1986). 
 •  Local clutter metric. 
 
Circular Symmetry (CS8) clutter metric (Reisfeld, Wolfson, & Yeshurun, 1995) 
 
To calculate: 
 •  Take each pixel P and calculate a set of values based on the local gradient in the area 
and the symmetry of the point in eight radial directions about points in the area: S8(i, P), where i 
is the direction of symmetry. 
 •  The symmetry, CS8(P), for each point is the product of S8’s for all eight directions: 
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 •  A global symmetry metric is calculated thus: 
  •  Divide the scene into k rectangular blocks. 
  •  Calculate the sum of symmetry values within each block: 
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 •  The global metric is the root mean square of the block-wise symmetries: 
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NOTES: 
 •  Assumptions behind metric are that (1) man-made objects are more likely than natural 
scene elements to have a high degree of symmetry, and (2) visual system is able to readily locate 
regions of high local symmetry in a scene. 
 
 
Statistical Variance (SV) clutter metric and the SCR (Schmieder & Weathersby, 1983) 
 
To calculate: 
 •  Divide scene into N blocks, each twice the height and width of a known target. 
 •  Calculate gray-level variance of pixels within each block i. 
 •  SV is the root mean square of the block variance: 
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We calculate SCR by dividing the target contrast with its immediate background by SV: 
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NOTES: 
 •  Based on idea that the visual system is interested in areas of the scene with high gray-
level variability.  Consistent with the notion of “confusing forms” in that targets are presumed to 
have high gray-level variability, although SV does not take into account actual target structure.  
(Instead, it uses the variance of targets as a generalization of target-like structure.) 
 •  SV is a global measure, though 2

iσ  represents a local metric for clutter. 
 •  This metric underestimated performance for urban clutter, indicating that variance 
alone does not completely instantiate clutter (Cathcart, Doll, & Schmieder, 1989). 
 
 
Probability-of-Edge (POE) clutter metric (Tidhar et al., 1994) 
 
To calculate: 
 •  Convert gray-scale image into edge map. 
 •  Image is divided into regions.  Regions are assigned a value, depending on the fraction 
of pixels within it that are edges, POEi 
 •  Overall probability of edge for an image is the rms of local POEi’s: 
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in which POEi,T = probability of edge in region i with DOOG filter threshold T 
 
NOTES: 
 •  Based on idea that early visual processing is involved in edge detection and extraction 
(e.g., Marr & Hilldreth, 1980). 
 •  Edge detection performed with a DOOG whose output over the scene is thresheld to a 
level T to yield a yes/no pixel-by-pixel edge map of the scene. 
 •  Local or global metric of clutter, depending on whether POEi or POE is of interest. 
 
 
Peak-Signal (ΔTPS) clutter metric (Rotman, Kowalczyk, & George, 1994) 
 
To calculate: 
 •  Set a tolerance ΔT and a minimum cluster size. 
 •  Start with a pixel at a corner and compare it to its neighbor.  If the intensity difference 
is within ΔT, average the two intensities and join them into a cluster. 
 •  If the difference is greater than ΔT, then the new pixel is assigned to a new cluster. 
 •  Repeat this for all pixels, then for all existing clusters until clusters are at least as large 
as the minimum cluster size. 
 •  The peak-signal ΔTPS is calculated as: 
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in which Tmax and Tmin = intensities of the most and least intense clusters and 
  A(Tmax) and A(Tmin) = areas of the most and least intense clusters. 
 
 •  We may calculate block-wise ΔTPS,i by computing ΔTPS for arbitrary blocks of the 
scene 
  •  This step may be useful for eye movement validation of the metric, but 
otherwise, it runs the risk of cutting clusters down the middle. 
 
NOTES: 
 •  Based on the contrast between local extrema and their background. 
 •  Divides scene into clusters by grouping pixels of the image together into regions of 
high and low intensity (the T in the metric is short for temperature) based on the contrast of the 
pixel with its neighbor.  Groups of pixels are likewise grouped together with their neighbors until 
clusters of the minimum size defined by the user are achieved. 
 •  A global metric for clutter. 
 
 
Target Complexity (TC) metric (Tidhar et al., 1994) 
 
To Calculate: 
 •  Calculate a histogram of edge intensities by means of a DOOG filter over the target 

area and its immediate surround.  Let the histogram be:  
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in which 0 and G-1 are the minimum and maximum histogram values 
  Ni = the number of pixels in the bin at level i 
 
 •  The corresponding cumulative distribution of edge intensity levels is: 
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in which M = the number of points in the histogram. 
 
 •  SN has the following properties: 
  SN(i) = 0 when i<0 
  SN(i) = 1 when i>G-1 
  SN(i) < SN(i+1) 
 
 •  Target detectability is proportional to the absolute mean distance between cumulative 
edge histograms of the observed target section (SN) and the situation when all pixels have the 
same value (P(i)):  
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NOTES: 
 •  local metric 
 •  Reasonable correlation to overall search RT (authors). 
 •  The size of the surroundings taken with the target seems to be crucial, as a uniform 
local surround yields a prediction of zero clutter even when the overall scene may be very 
complex. 
 
 
Complex Clutter metric (K) (Lillesæter, 1993) 
 
To Calculate: 
 •  An image with a visible target-background border must be selected.   
 •  Let Z be the entire length of the target contour. 
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in which GT = pixel gray value distribution of the target area 
  GB = pixel gray value distribution of the background support area 
  a, b = weight factors that sum to unity (usually assumed to be 0.5). 
 
NOTES: 
 •  Incorporates variable target-background contrast around border with a first order 
metric of contrast. 
 •  The first term is the mean area contrast. 
 •  The second term corresponds to the contrast around the entire target-background 
boundary.   
 •  The amount of the background to incorporate into the contrast calculation is arbitrary. 
 •  Does not take into account structure of target or length of perimeter (which, in extreme 
circumstances, may inflate the metric). 
 •  Local metric 
 
Normalized Histogram Intersection and CAMELEON camouflage strength (C) (Hecker, 
1992) 
 
Normalized gray-level histogram calculation (for n-bit gray level): 
 •  Let h(v) denote the histogram entry for value v, and let the image represent a function 
with 2n levels on a rectangular array of width w and height h: 
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 •  If na is the number of pixels in the area over which the histogram is computed, then the 
normalized histogram H(v) is defined as: 

an
vhvH )()( =  

(Note:  The area over which the histogram is calculated does not need to be rectangular.  
However, it is assumed to be a rectangular region around the target for the calculation of this and 
most other metrics used in target acquisition models.) 
 
Histogram Intersection calculation: 
 •  Let HT be the normalized histogram containing the target and HB the normalized 
background histogram. 
 •  The intersection of the matrices is defined as the cumulative sum of the pairwise 
minimum of corresponding histogram bin heights: 
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in which n = number of bins 
 
 •  The value of the intersection will be between 0 and 1:  0 = no overlap, 1 = complete 
overlap. 
 
Camaeleon calculation: 
 •  Start with a gray level or color image input image. 
 •  Specify a region in the image as target and a region as background (need not be same 
size). 
 •  Camaeleon convolves image with set of quadriture band-pass filters to derive pixel-by-
pixel representations for the target and background regions: 
  •  Local energy based on sum over all bands of the energies of individual filters 
  •  Local spatial frequency based on vector sum of complex frequency averaged 
over all filter bands 
  •  Local orientation is computed as vector sum of directions over all filter bands 
 •  Normalized histograms are then calculated for target and background pixels in energy 
(HET and HEB), frequency (HFT and HFB), and orientation (HOT and HOB) 
 •  Camouflage strength, C, is calculated as the product of the histogram intersections: 

)()()( BTBTBT HFHFHOHOHEHEC III ⋅⋅=  
NOTES: 
 •  C is inverse of conspicuity (C may be thought of as measure of local clutter) but is only 
defined on [0,1].  The rank order of targets with different values of C will reflect the rank order 
of their clutter. 
 •  Assumption is made that orientation, frequency, and energy are all equally important to 
estimates of camouflage. 
 •  Boundaries between target and its background are not necessarily taken into account. 
 •  Being based on first order metrics (i.e., histograms) of individual features, the spatial 
configuration of the features is not specified in the metric.   
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Cortex Transform-based distinctness (d) (Watson, 1987; Ahumada & Beard, 1996; Rohaly, 
Ahumada, & Watson, 1997) 
 
To Calculate: 
 •  Take image with target, I1, and image without target, I0. 
 •  Convert images to luminance contrast by subtracting and then dividing by the mean 
background image luminance: 

00 /)( IIII jj −←  
 •  We then applied contrast sensitivity filter S to I1 by multiplying its Fourier components 
by the magnitude of S’s component wavelengths and then recombining the components with the 
inverse Fourier transform: 
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 •  Next, the Cortex transform is applied to the image.  The cortex transform corresponds 
to a set of 20 filters:  five spatial frequencies with four orientations each, applied to every point 
(x,y) in the image.  The resulting coefficients, corresponding to the signal strength of the 
channel, for image Ij are cj,k, where k ranges over four dimensions:  orientation, frequency, x, and 
y. 
 •  We compute the detectability of each coefficient (dk) by taking the absolute difference 
between image and background coefficients: 
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 •  We implemented masking for super-threshold channels by decreasing dk by a factor 
related to the background channel signal when the background channel exceeds detection 
threshold: 
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 •  The overall distinctness metric, d, is calculated as the Minkowski sum of the individual 
coefficients: 
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NOTES: 
 •  Based on psychophysics and physiology 
  •  Contrast sensitivity function and SF decomposition of image are part of 
calculation. 
 •  Comparison between two images (one with target and one without) to determine 
detectability of the target. 
 •  Incorporates masking (was determined to over-predict performance without it [Rohaly 
et al., 1997]) 
 •  Only for achromatic images. 
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